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COMETT 2 Project on
Chemometrics and
Qualimetrics

¢ v ppom ::;?’i;..m
The 'Ef;‘é’:has awarded severak]

projects to European, chemo-
metriczans 1n  ats COMETT
program. The objective of the
COMETT program is to organize
industry oriented traxmng-on a
transnational level in advanced
technological subjects. yThe pro-
gram is open to all/12 EEC
countries but also
countries (Norway; Sweden, Fin-
land, Iceland; Austria and Swit-
zerland)~NFour types of projects

were awarded, namelyy

§€re’mion of a network for

analyzing training needs, or<
e o

oxeh \?

sources and lca;nix;g mnteriai:
etc. This network is called

Eurochemometrics,/

ﬁ::hange of students and staff.
Such an exchange must at the
same time be transnational and
involve both industry and
university (for example a
university in Belgium can send
one of its students to an in-
dustry in Switzerland).

- Short course on method Yalida-
tion. This projected is co-
ordinated by Dr. H. Smit
(Universiteit van Amsterdam,
Laboratorium voor Azulytische

Schetkunde, Nieuwe  Ach-
tergracht 166, 1018 WV
Amsterdam, The Netherlands).
~ Demonstration (pilot) project
on a package of courses and
training matenals. (Chemo
metrics and qualmetrics for
f‘ he chemical, pharmaceutical
&and agroalimentary mdustries).

Except for the course coor-
dinated by Dr. Snut, the projects
are coordinated by the author of
this news item,

The most important project s,
without doubt, the pilot project. It
proposes courses on 4 ievels:

= Introductory and integration
courses. The mntroduction cour-
ses are 2 to 3 day general cour-
ses, meant for countries where
chemometrics has progressed
to a lesser extent. Integration
courses are those which com-
prise chemometrics together
with more familiar subjects. An
example of such a course 1s that
orgamzed by Prof. Ducauze and
Dr. Feinberg in Pa‘is (in
French, Institut Nationa! Agro-
nomique, Laboratoire de Chi
mie Analytique, rue Claude
Bernard 16, 75231 Paris Cedex
05, France). By teaching a
course in which chemometrics
is made available in the same
program as instrumental lab-
oratory methods, it aims at the
integration of chemometrics in

the more general knowledge of
analytical chemical method-
ology.

General long courses These
courses are similar to those or-
gamzed 1n the earlier, less am-
bitious COMETT 1 project. The
course lasts about 5 days, 1s or-
ganized by different countries
in turn and has many lecturers
from industry and university.
Such schools have been or-
ganized earlier 1 Aix en
Provence, Gargnano, Tortosa,
Brstol and Bruges. The next
school will be organized i or
around Nijmegen. (For details,
write to Dr, L. Buydens, Labo-
ratorium  voor  Analytische
Chemie, Katholicke Unmwver-
sitert Nijmegen, Toernooiveld,
65256 ED Nijmegen, The
Netherlands.)

Specialized short courses where
subjects can be treated in
greater depth. Many subjects
are possible, but those that
seem to be favoured are ex-
perimental  design, multi-
variate cahbration, method
validation and quality as-
surance and eapert systems, A
list of courses available for in-
house teaching will also be
made available.

European masters degree. The
partners in the project will try
to develop a degree, the aim of
which is to train chemomet-

[ YUF o VR
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ricians with a sufficiently broad
knowledge.

Tke Surochemometrics con-
sortium will also produce ‘dis-
tance learning’, courseware and
teaching aids For instance, Olav
Kvalheim will complete his
SIRIUS ADVISER vregram with
a videotape introduction course.

The total level of expenditure
is about 25 million ECU (e,
about US$ 3.2 million) of which
the EEC pays half. There are 70
partners (about 30 industrics, 30
universities and 10 research in-
stitutes). The project is coor-
dinated locally by 12 centres. One
of these is devoted to distance
learning (coordinator Dr. R.
Brereton, University of Bristol,
School of Chemistry, Cantock's
Close, Bristol BS8 178, U.K) and
the other eleven to organizing
courses and producing teaching
aids and courseware. The list of
these centres is given below,
together with thy name and ad-
dress of the coordinator(s). Fur-
ther information can be obtained
from the author of this article or
from the local centres.

Norway/Denmark. Coordinator:
Q. Kvalheim, University of Ber-
gen, Department of Chemistry,
Realfagbygget, Allegt. 41, 5000
Bergen, Norway

The Netherlands, Coordinator:
L. Buydens, Katholiehe Uni-
versiteit Nijmegen, Laborato-
rium voor Apalytische Chemie,
Toernociveld, 6525 ED Nij-
megen, The Netherlands

Sweden/Finland. Coordinator:
P. Geladi, Umed Universitet,
Department of Organic Chem-
istry, 90187 Ume3, Sweden

Austria/Germany/Switzerland.
Coordinator: W. Wegscheider,

University of Technology Graz,

Institut  fur  Analytische
Chemie, Tecknikerstrasse 4,
8010 Graz, Austria

France (North). Coordinator: M.
Feinberg, INA, Laboratoire
de Chimie Aralytique, 16 rue
Claude Bernard, 75231 Paris
Cedex 5, France

France (South). Coordinator: R,
Phan-Tan-Luu, LPRAY Centre
de St.-Jérome, Université d’Awx
Marseille 111, rue Henn Poin-
caré, 13397 Marseille Cedex 13,
France

United Kingdom/Ireland. Coor-
dinator: SJ. Haswell, The
University of Hull, School of
Chemistry, Hull, HU6 7RX,
U.K.

United Kingdom. R. Brereton,
University of Bristol, School of
Chemistry, Cantock’s Close,
Bristol BS8 178, U.K.

United Kingdom. S. Pringle,
University of Bristol, Depart-
ment for Continuing Education,

-~ Quahté et validation des
méthodes. La bonne pratique
de laboratoire (3-11/10/91 —
Paris). Information: M, Fein-
berg

- Echantillonnage et contrdle de
qualité dans les industries
agroalimentaires  (10-12/4/91
~— Paris). Information: C.
Ducauze

- Information des laboratores
(27-29/11/91 — Paris). Infor-
mation: M. Feinberg

-~ Multivariate optimization and
experimental  design  (26-
28/5/91). Information: Q. Kval-
heim

—~ 7th  COMETT School on
Chemometrics (date to be an-

d later — Nymegen), In-
formation: L. Buydens

— Etude dans un domame ex-
perimental sans contrainte
(18-22/3/91 — LPRAI Mar-
seille), Information: R. Phan-

Wills  Memorial  Building
Queen’s Road, Bristol BS8
1HR, UK.

Italy, Coordinator: M. Forina, Is-
tituto di Analisi ¢ Tecno, Far-
maceut. ed Alimentari, Via
Brigata Salerno, ponte, 16147
Genova, Italy

Spain/Portugal.  Coordinator:
F.X. Rius, Universitat de Bar-
celona, Depart. de Quimica, PL
Imperial Tarraco 1, 43005 Tar-
vagona, Spain

The first courses to be an-
nounced within the COMETT
scheme are:

= Chemometrie und kinstliche
Intelligenz (8~32/4/91 — Ruhr-
Universitiit Bochum). Informa-
tion: W, Wegscheider

~ Optimisation: stratégies et
méthodes (13-15/3/91 — Paris).
Information: M. Feinberg

Tan-Luu
~ Sensililisation et principes de

base (15-19/4/91 — LPRAI
Marsenlle). Information: R.
Phan-Tan-Luu

~ Formulation et mélanges (3-
7/6/91 — LPRAI Marseille). In-
formation: R, Phan-Tan:Luu

=~ Méthodes modernes d'élabora-
tion de matrices d'epériences
optimales  (14-18/1091 —
LPRAI Marseille). Information:
R.Phan-Tan-Luu

= Sensibilisation et principes de
base (18-22/11/91 — LPRAI
Marseille), Information: R.
Phan-Tan-Luu

~ Criblage et étude des facteurs
(9-13/1291 — LPRAl Mar-
seille). Information: R. Phan-
Tan-Luu

D.L. MASSART
L}
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HEl News

Interlaboratory
Testing Award
Nominations

Nominations are now being ac-
cepted for the 1991 W.J. Youden
Award in Interlaboratory Testing,
sponsored by the American
Statistical Association. Final date
for receipt of nominations 15 Aprit

1, 1991, The W.J. Youden Award
in Interlaboratory Testing was es-
tablished in 1985 to r

Eligible publications for the
1991 award must appear 1n profes-

publications that make outstand-<
ing contributions to the design
and/or analysis of interlaboratory
tests or describe ingenious ap-
plications to the planning and
evaluation of data from inter-
laboratory tests. The award con-
sists of US $1,000 and a suitable
citation,

it y fereed journals or

monograph series in 1989-1990,
Nominations, alor;y with 6 copies
(in English) of the publication,
should be sent to the Chair of the
Award Commuttee, Paut vor Doeh-
ren, Searle, 4901 Searle Parkway,
Skokae, 1L 60077, U.S.A.

W Book Review

Fourier Transforms in
NMR, Optical, and
Mass Spectrometry. A
User’s Handbook, by
A.G. Marshail and
F.R.Verdun

Elsevier, Amsterdam, 1989, xvi +
450 pages, price Dfl, 220.00, U58
107.25 (hardcover), DAl 95.00,
US$ 46.25 (paperback), ISBN 0-
444-87360-0 (nardeover), 0-444-
87412-7 (paperback)

Fourier transforms are becoming
increasingly important for a
range of spectroscopic techniques,
Some of these tecbmiques, such as
NMR and infrared spectrometry,
are now performed almost ex-
clusively using FT mstruments,

The object of this book 1s to clarify
the sumlanties and differences
between the application of
Fourier transforms to these dif-
ferent techniques. It provides, for
the first time, a unified treatment
of the mathematics of Fourier
transforms and their apphcation
to the three most forms

answers) 1s presented at the end
of each chapter. These are par-
ticularly useful if the book is
being used as a class text, but
could also be valuable to readers
who wish to consolidate their un-
derstanding of the material pre-
seuted 1n each chapter, The only
ignificant laint about the

of FT spectrometry. Despite the
few limitations noted below, the
aims of this book are achieved ad-
mirably.

The style of this book was ob-
viously carefully thought out; the
book is both easy to understand
and very readable, The use of in-
volved mathematics is avoided ex+
cept where necessary, and exten-
sive use of illustrations is made to
clarify the most difficult points,
Physical examples are also given
frequently to show the relevance
of particular theorems or con-
cepts. A set of problems (with

style is that, because of the
authors desire to keep the mathe-
matics to a mimimum, readers are
regularly requested to verify a
particular result for themselves,
This is often justified, since most
of this extra material would rave-
ly be used and its inclusion would
simply clutter the text. At other
times, however, the added detail
would be useful and the fact that
readers are required to verify it
for themselves could be irntating,

The book consists of ten chap-
ters, the first six of which cover
general matenial, and the last
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four of which deal with specific
types of Fourier transform
spectrometry. Chapter 1 intro-
duces spectral line shapes and ex-
plains the Fourier transform
relationship between impulse
response and contmuous oscilla-
tion experiments. The origins of
absorption mode and dispersion
mode spectra are also covered.

Chapters 2 and 3 cover the
mathematics of Fourier trans-
forms cf both continuous and dis-
cretely sampled waveforms, This
mcludes topics such as dynamic
range, ahasing, zero-filling, apodi-
zation, and phase correction

The stated purpose of Chapter
4 15 to deal with experimontal
aspects that are common to all
types of Fourier transform
spectrometry. Although this is
generally true, a significant
amount of the material presented
has little or no relevance to FT-
optical spectrometry.

Chapter 5 deals with the dif-
ferent sources of noise that can
occur in FT spectrometry, and
which sources of noise lead to a
multiplex advantage or disad-
vantage. The effects of signal
averaging, dynamic range, and
apodization on the signal-to-noise
ratio are also discussed.

In Chapter 6 nonFT methods
for converting data from the time
to frequency domain are ex-
plained and compared with the
FT method. Jt is worth noting
that these initial, general chap-
ters are written mainly in the lan-
guage of FI-NMR or FT.mass
spectrometry, which is not always
the same as that of FT-optical
spectrometry. Because of this,
readers wishing to learn about

FT-optical spectrometry (o par-
ticular, FT-IR) may find them
somewhat confusing, and a rather
large portion of the material ir-
relevant. For readers who are
mainly interested in the areas of
NMR and/or mass spectrometry,
however, these initial chapters
provide an excellent and com-
prehensive introduction to FT
spectrometry.

Chapters 7, 8 and 9 deal with
aspects of FT spectrometry that
are unique to FT-mass spectro-

form pawrs, and other useful data.
These appgndices are a good addi-
tion, 2nd mean that the book cer-
ta:aly qualfies as “a user’s hand-
book”,

‘This book 1s clearly aimed at
students and scientists who need
to learn about several types of FT
spectrometry, and it 1s an excel-
fent text for this purpose. It
should prove to be particularly
useful both as a teaching text and
as a general reference for Fourier
transform methods as they are

metry, FT-nucl gnetic
resonance spectrometry, and FT-
optical spectrometry. Of these
chapters, that on FT-optical
spectrometry is by far the
weakest. It is appreciably shorter
than the other two chapters, and
attempts to deal with FT-in-
frared, FT-ultraviolet/visible, FI-
Raman and Hadamard trans-
form-Raman spectrometries.
Consequently, none of these tech-
niques are covered I enough
detail to give anything more than
a very basic introduction.
Although Chapter 9 1s rather
poor, the two chapters on FT-
NMR and FT-mass spectrometry
give a good overview of the cur-
rert state of the art, and enough
information to give a sohd
grounding in the field of interest.
Chapter 10 provides a brief
review of the application of FT
methods to  other forms of
spectrometry. Finally, five appen-
dices are included which give in-
tegrals and theorems for FT ap-
plications, a description and
program listings in FORTRAN
and BASIC for the fast Fourier
transform  algorithm, a com-
prehensive atlas of Fourier trans.

pplied to spectrometry.

For newcomers to the fields of
FT-NMR or FT-mass spectro-
metry this 1s also an excellent -
troductory text, which puts the
techmque of wmterast 1nto the con-
text of other forms of FT
spectrometry. Although those
wishing to learn about FT-optical
spectrometry may find this book
to be rather confusing and the -
formation n 1t somewhat limited,
for those who already have a good
grounding i these techniques
considerable insight could be
gamned from the fresh look at old
material.

Vverall, this is a book to be
recommended, and 1t should
prove to be a valuable addition to
many spectroscopists’ bookshel
ves.

RICHARD S. JACKSON and
PETER R. GRIFFITHS
Department of Chemustry,
The University of Idaho,
Moscow, 1D 83843, U.S.A.
I
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MADLUST 90,
Chemometrlcs
Towards 20000,
Tromseg, Norway,
2-6 July 1990

MADLUST 90 was the third in a
series of workshop seminars on
chemometnics. The previous two,
ASTMULD (1984) and MULDAST
(1987) were very much local to
developing the theories and tools
now widely pted th hout

ington, US A) and a trio from the
University of Washington, U.S.A.,
representing  the Center for
Process Analytical Chemistry (Jim
Burger, Marybeth Seasholtz and

Chemometrics Towards 2000
allowed elements of art and culture
to be wmtroduced into ch trics
as well as consideration of some of

Yondong Wang). The presentations
are subsequent discussions high-
Iighted three major areas, two of

the probl facing ch trics.
Enk Johansson (Hissle AB,
Sweden), Willem Windig (Eastman
Kodak, U.S.A) and Harald Mar-

which are not normally dered | tens {(C Analysis A/S, Nor-
by chemometricians. The interface | way) raised the issues of the xmage
between the perator and | of c¢h trics  in

chemometrics 15 very mmportant
and determines the acceptability of
the method and, hence, its overall

the world. For MADLUST, the or-
gantsers (Kim Esbensen, Norway,
Paul Gelad: and Michael Sjdstrom,
Sweden, and Pentti Minkkinen,
Finland) took a worthwhile
decision to broaden the focus of the
meeting to include people from in-
dustry who apply chemometrics to
their particular problems. The hope
was, of course, that the two groups
would spark idcas off each other,

minds. There 15 a need for simpli-
city of approach and the incorpora-
uon of techmques from outside

trics, if ch trics is to

Part of the interface 1s the
presentation of the results from
the ¢h trics and the pt

of having a visible, variable-sized
dustbin for all unexplained or un-
expected effects proved to be novel
and challenging to some. The third
area — locally weighted models —
has proved valuable but clearly
needs more theoretical develop-
ment to be generally applicable.
The session on Statistics and
Ch trics was more con-

The hope was well realised. The
meeting was organised around four
main themes: Process Chemo-
metnes, Statistics and Chemo-
metrics, Chemometrics Towards
2000, and Image Analysis in
Chemometrics. Each theme occu-
pied a day and discussions on the
theme were fi d by g

cerned with the theoret:cal devel-
opment of chemometric and was
presented by Tormod Naes (MAT-
FORSTK, Norway), Age Smilde
(University of Groningen, The
Netherlands), Hans Beratsen
(SINTEF, Norway) and Agnar
Hoskuld (DIA-M, Denmark).

tions from a small group of speak-
ers. This arrangement meant that
plenty of time was available for dis-
cussion,

The Process Chemomaetrics ses.
sion was perhaps the major in-
novation of the meeting, The
presentations were by John Mac«

Four quite different subjects were
discussed: local modelling, the

lysis of three d | data
arrays, the relation of the extended
Kalman filter with Dbilinear
modelling and the optimisation of
selecting t-vectors for inclusion in
a PLS model, Each created con-

Gregor (MacMaster U
USA), Roy Tranter (Glaxo
Manufacturing  Services, UK),

Randy Pell (University of Wash.

ble d and the first
two, at least, showed how some of
the problems highlighted in the
first session could be resolved.

survive and de\elop as a viable
subject. These, and the magor dis-
cussion  session  subtitled “The
Chemometrics User Speaks Back”
were a highlight of the week as
they clanfied a number of ideas
that could increase the accept-
ability and usefulness of chemo-
metrics 1n many areas, particularly
in ndustry.

The final session, Image
Analysis, was presented by Ewart
Bengtsor: (Centre for Image Anal-
ysis, Sweden) and Hans Grahn
(University of Umed, Sweden).
Here, the benefits of being able to
extract from very large image data
sets the parts of an image which
are related to each other through
chemical, physical or medical fac-
tors, were well described. As these
techniques are essentially non-
destructive as far as samples are
concerned, they have potential in
process analysis, thus bringing the
meeting back to 1ts starting point.

R.L. TRANTER

Glaxo Manufacturing Services
Ltd., Barnard Castle,

Co, Durham, U.K.

-
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I Meeting Announcement

2nd Scandinavian
Symposium on
Chemometrics
Bergen, Norway,
28-31 May 1991

More than 60 contributions were
received within the submission
deadline {15 January) and we list
a small selection below. The full
program (second announcement)
will be available by 15 February.

Special session: Relations be-
tween the latent-variable
approach in chemometrics,
biometrics, econometrics and
psychometrics

P, Horst: Sixty years with latent
variables and still more to come

J. Birks: Reconstruction of past
lake-water pH from biological
data == applications of numeri-
cal calibrations to acid-rain re-
search

HF.M. Boelens, B. van den
Bogaert and H.C. Smit: Defer
mination of parameter values in
a signal model using a matched
linear system

R. Carlson: Synthetometrics.
Recent developments

L. Eriksson and M, Sjsstrom: Ra-
tional ranking of chemicals ac-
cording to environmental risk

K. Esbensen and P, Geladi: Multi-
variate image regression (MIR)
— principal component regres-
sion for modeling and predic-
tion

K. Faber, L. Buydens and G.
Kateman: Determination of the

number of significant factors in
a data matrix
P. Geladi: A comparison of clas-
ificati thods as applied fo
chemical multwariate imoge
analysis
M. Gerritsen, L. Buydens, B, Van-
deginste and G. Kateman:

Quantitati ltivariate
analysis of HPLC-UV data by
GRAM and ITTFA

H. Grahn and J. Saf: MRL { S
and MIR

J. Havel, A, Hrdhcka, C. Moreno
and M. Vahente: Evaluation of
ICP-AES multicomponent trace
analysts da*a by PLS calibra-
tion

S. de Jong: Principal Covariates
Regression

J. Jonsson, M. Sandberg, S.
Réinnar, M. Syéstrém and S.
Wold:  Parametrization  of
nucleotides and the use of these
characteristics in QSARs for
regulatory DNA sequences

EJ. Karjalainen and U.P. Kar-
jalainen: Simulteneous anal-
ysis of multiple GC runs and
samples  with  alternating
regression

N. Kettaneh-Wold: Mixture design
and PLS modelling — some in-
dustrial applications

O.M. Kvatheim, Yi-zeng Liang
and T.V. Karstang: A full rank
solution to evolving factor
analysis using selectivity and
latent projections

Y.-Z. Liang: Qualitative and
quantitative analysis of multi-

p t data — methods for

treating white, grey and black
analytical systems

R. Manne and 1.V, Karstang: Op-
timal scaling — a solution fo

the “size” problem in multi-
variate calibration

H. Martens, B. Alsberg and E.
Stark: Multivariate preprocess-
ing of NIR spectra by EMSC
and SIS

D.L. Massart, H. Keller and B.
Bourgwgnon: An operation re-
search opproach to multi-
criteria deciston making

P. Minkkinen: Opfemization of en-
vironmental enussion measure-

. ment plans

A. Nordahl. Computer controlled
optinuzation of organic syn-
thetic reactions

R. Tranter: Process monttoring
and meaningful numbers

B. Skagerberg: Multivariate stat-
istical process control (MSPC):

AK. Smilde, CH.P. Bruins,
P.MJ. Coenegracht and D.A.
Doornbos: Combination of fac-
torial design and threc-way
analysis to elucidate the in-
fluence of free silanol groups of
the stationary phase on refen-
tion in RP-HPLC

V.M. Taavitsainen: Nonlinear
multivariate date analysis

N. Vogt: Quality by Design

W. Wmndig and C.E. Heckler:
Simple-to-use interactive self:
modelling  mixture analysis,
new developments and appl
tions in industry

S. Wold: Nonlinear PLS with
splines

R.-Q. Yu: Chemometrics in China

(¢

For registration (deadline 12
Aprid or information, contact:
Laila Kyrkjebo or Olav M. Kval-
heim, Department ¢f Chemistry,
University of Bergen, N-5007 Ber-
gen, Norway, Fax: +47 5-329058
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CF jes and Intelligent Lab
Elsevier Scente Publishers B V. Amsterdam

ry Systems, 10 (1991) 11-12

Organizer’s summary

This was another mmportant meeting where
leading researchers in both the chemical and
mathematical sciences exchanged 1deas and dis-
cussed new results. There was ample time for
participants to form new friendshups and exchange
1deas. One of the mawn benefits of these meetings
15 to get to meet and know colleagues from outside
disciphines. Participants enjoyed wine tasting at a
focal wimery duning the second might of the con-
ference. Duning the first night the participants had
a banquet dinner with after dinner speaker Dr.
Herbert Hauptman co-wimnner of the 1985 Nobel
Prize in chemistry. He at my request, gave a frank
discussion of the difficulty of getting chemists to
accept tus and Karle'’s results. Part of these diffi-
culties are presented in the wntten version of his
talk, Dean Abe Clearficld of Texas A&M and Dr.
E. Prince of the National Institute of Standards
and Technology at my request have included n
the proceedings their comments that followed Dr.
Hauptman’s talk,

As was the case at the 1985 Chemometrics
Research Conference that I coorganized most m-
vited talks had invited discussants. Chenusts’ talks
were di d by a math and mathema-
ticians’ talks weie discussed by a chemist, Sone
speakers were hard to classify as belonging to one
field or the other. The main focus of the mvited
discussions was to explain and expand upon the
main preseniation to the broad audience,

The opening session was moderated by Lloyd
Curric of NIST and the opening speaker was Leon
Gleser whose talk demonstrated to the conference
that measurement error models are often useful,
The second tatk was by Annc Thompson and she
discussed chemical and statistical modeling to en-
vironmental science,

The second sesston dealt with making seusc
from multivaniate data, Peter Jurs gave a survey of

the use of clustering procedures in lus laboratory.

The third session dealt with modeling in chem-
1stry. Professor Steve Brown of the University of
Delaware gave his change of time series proce-
dures for calibration while Professor Don Watts
of Queens Unwversity demonstrated bow useful
profile ¢ and trace plots can be n obtaining
interval estimates. The fourth session dealt with
statistical mechanics issues duning which the audi-
ence was treated to mteresting fractal plots and
interpretations. The Speakers were Fereydoon
Family from Emory University, Dan ben-Avra-
ham from Clarkson University, and David Weitz
from Exxon Research Labs.

The sixth session gave an interesting descrip-
tion of how a graduate student in statistics work-
g with a distinguished electrochemist can impact
chemistry. This talk was given by Janet
Osteryoung. The second talk at this session was
also based upon joint work by an agricultural
chemist and a statistician. They gave interestiug
case study cxamples of where PLS would and
would not work. The third talk was an interesting
statstical layout of receptor modeling given by
Karen Bandeen-Roche.

In the next session Phil Hopke gave a tutorial
on the use of receptor modeling and Ron Henry
gave a lecture about the use of optimization meth-
ods in environmental modeling.

We had a dynamic session on structural model-
g that included talks by Ted Prince of the NIST,
Macolm Gerloch of Cambridge University, and
Milan Randi¢ of Drake University. Ted talked
about the use of maximum entropy techniques to
resolve structure. (Ted says that since the con-
ference he and some colleagues have made im-
portant advances.) Macolm talked about ligand
field theory and the electronic structure of in-
organic complexes and Milan gave an interesting
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talk on the use of graph theory as a compamon
procedure to more often used clustering tech-
niques.

The final session was about multivariate analy-
sis and design. It was enjoyed by all. Probably a
humorous thing that many will remember for a
long time is the ‘honors’ that Cris Nachheim

tacked onto his name with the abstract such as
FRS and ASPCA among others. Cris gave an
interesting talk on experimental design and Pat
Carey gave examples of successful application of
PLS methods at Los Alamos.

C.H., SPIEGELMAN

e r———
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History of X-ray crystallography

Herbert A. Hauptman
Medical Foundation of Buffalo, Inc, 73 High Street, Buffalo, NY 14203 (U S.A.)

(Received 11 July 1990; accepted 19 July 1990)

Abstract

Hauptman, H.A , 199]. History of X-ray <rystallography, Ch

cs and Intell Laboratory Systems, 10. 1318

In thus bref shetch of the history of X-ray crystallography I emphasize the important role played by the development of the direct

methods whith were devised (o solve the central problem of X-ray cry
1 role which math
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importance of cross d 'y research, in p far the

INTRODUCTION

In 1895 Wilhelm Rdntgen discovered X-rays.
With this discovery the stage was set for the
creatton of the modern science of X-ray crys-
tallography.

In 1912 Paul Ewald was completing his doc-
toral dissertation concerned with the optical prop-
erties of a medium consisung of a regular arrange-
ment of 1sotropic resonators. A crystalline solid
which, on the sub-nucroscopic level, consists of a
trply peniodic, regular arrangement of atoms, or
molecules, is therefore preaisely the kind of
medium with which Ewald was concerned. Since
the smallest nteratomic distances 1 a crystal are
of the same order of magnitude as the wavelengths
of Xerays, it occurred to Max von Laue, upon
learning of Ewald’s results, that a crystal might
serve as a three-dimenstonal diffraction grating for
X-rays. In order to test this hypothesis he pre-
vailed upon the younger physicists Walter

0169.7439/91/50350  © 1991 = Elsevacr Science Publishers BV,

s played in this development.

Friedrich and Paul Knipping to perform the nec-
essary scattering experiment.

The scattening expeniment sndeed showed that
when & beam of X-rays strtkes a crystal, the crystal
scatters the sncident beam in many different direc-
tions and with different intensities. If these
scattered X-rays strihe a photographic plate they
will blacken the plate at those poimnts where the
scattered rays strike the plate, In this way one
obtains the so-called diffraction pattern, This ¢x-
pertment marked the birth of the science of X-ray
crystatlography and, b of its fund 1
importance in determuning crystal and molecular
structures, must be regarded as a landmark event
in twenticth century science. The major obstacle
in the path leading from the obscrved diffraction
pattern to the desired crystal structure is known as
the phase problem, for reasons to be given shortly.
1 propose here to give a brief historical account of
the methods devised to overcome this obstacle, the
so-called direct methods of X-ray crystallography.
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THE DIFFRACTION PATTERN

It has already been remarked that a crystal may
be regarded as a regular triply penodic arrange-

ment of an array of atoms. One imagines three:

families of planes, the planes m each family being
parallel to and cquidistant from one another. In
this way one obtains a tiling of the crystal space
by means of congruent parallelepipeds each one of
which is said to be a fundamental parallelepiped,
or unit cell, of the crystal,

If each unit cell contains a molecule = a
collection of atoms ~~ in its interior, and if the
atoms are arranged in preciscly the same way in
all the unit cells, then each unit cell and its con-
tents are indistinguishable from every other umt
cell and its contents.

There corresponds to each atom an electron
density function; hence, by superposition of the
indwvidual atomic electron density functions, one
obtains an overall electron density function p(r),
a nonnegative function of the osition vector r
which gives the number of clectrons per unit
volume at the position r. It is clear from the
geometric construction that the electron density
function in any unit cell is identical to that in
every other unit cell. Hence p(r) is a triply peri-
odic function of position, and this property may
be taken as the mathematical definition of a
crystal,

If on the other hand we choose to regard a
crystal as a trply periodic arrangement of an
array of atoms, or molecules, then by a crystal
structure we mean simply the arrangement and
identities of the atoms in the unit cell and by a
molecular structure the arrangement and identities
of the atoms in the molecule.

It was recognized almost from the beginning
that the diffraction pattern, that is the directions
and intensities of the X-rays scattered by a crystal,
is uniquely determined by the crystal structure;
which is to say that if one knew the crystal struc-
ture — the arrangement of the atoms in the
crystal — then one could calculate the diffraction
pattern completely. It turns out that, conversely,
diffraction patterns in general determine unique
crystal and molecular structures, although this fact
was not known until many years later. In short,

the information content of a typical molecular
structure coincides precisely with the information
content of its diffraction pattern It 1s a measure
of the great advances made by the new science of
X-ray crystallography that one nowadays can
routinely .transform the information content of a
diffraction pattern mto a molecular structure, at
least for the so-called ‘small’ molecules, that 1s
those consisting of some 150 or fewer non-hydro-
gen atoms,

THE PHASE PROBLEM

Since X-rays, like ordmary vistble hght, are
electromagnetic waves, they have a phase as well
as an intensity, just as any other wave disturbance.
In order to work backwards, from diffraction pat-
terns to crystal and molecular structures, 1t turns
out to be necessary to measure not only the iten-
sities of the X-rays scattered by the crystal but
their phases as well. However, the phases cannot
be measured 1 the ordinary hind of diffraction
experiment; they appear to be irretnievably lost.
Only the intensities can be directly measured. This
then gives rise to the central problem of X-ray
crystallography, the so-called phase problem, how
to deduce the values of the phases of the X-rays
scattered by a crystal when only their intensities
are known. For some forty years after the land-
mark expenment of Friedrich and Knippmg, all
attempts to find a general method for going di-
rectly from the diffraction pattern, that 1s meas-
ured intensities alone, to the crystal structure, with
or without the intervention of the phases =~ a
method that would be useful for the complex
structures of interest to chemists, biologists, and
mineralogists — were defeated,

In fact, because the needed phase formation
was lost in the diffraction experiment, it was
thought that one could use arbitrary values for the
phases associated with the measured intensities of
the scattered X-rays. In this way one obtains a
myriad of different crystal structures, all con.
sistent with the known intensities. It therefore
came to be generally believed that a procedure for
going drectly from the measured intensities to
crystal structures could not, even in pnnciple, be
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devised. By the same mode of thinkmg, the prob-
lem of deducing the values of the individual phases
from the diffraction intensities, the so-called phase
problem, was also thought to be unsolvable, even
n principle. It wasn’t until the early 1950s, through

the exploitation of special properties of molecular
ical

mdividual phases by exploiting relationships be-
tween measured diffraction ntensities and phases
are known as direct methods.

The argument just presented was n fact antic-
ipated m 1927 by Heinrich Ott [1], who showed by
algebraic analysis and applications that the method

structures and through a simple h

1s capable of solving simple centrosymmetric

argument, that these erroneous conclusions were
(inally refuted.

Atomicity

The special property that all crystal and molec-
ular structures possess may be summed up in one
word: atomucrty, Thus the electron density func-
tion p(r) in a crystal takes on large positive values
at the atomic position vectors and drops 1o small
values between the atoms. If our goal is merely to
determine the positions of the atoms — that is,
the posuttons of the maxima of p(r) - rather
than the much more complicated electron density
function associated with the distnibution of atoms
in the crystal, then our problem is greatly sim-
plitied, 1t turns out to be not only determinate but

Hy greatly overdeterniined by the available
X-ray diffraction intensitics.

This 1s most casily seen by ehmnatng the lost
phase information from the relationships between
the diffraction pattern and the crystal structure,
Dorng this results in a system of equations relating
the diffraction intensitics alone with the atomic
position vectors, Because the number of these
relattonships far exceeds (by a factor of ten or s0)
the number of unknown position vectors needed
to define the crystal structure, our problem is
greatly overdetermined. Thus it 1s clear that there
vt relationships between the measured diffrac-
ton ntensities and the lost phases that may be
exploited. It follows that the phases of the scattered
X-tays are also determined by their intensitics. In
shori, the lost phase wformation 1s to be found
among the available intensitics, and the phase
problem 15 therefore a solvable one, at least in
ponciple. There remains the task of devising
numencal algorithms leading from the abundance
of experimentally measured diffraction intenstuies
to the values of the mndvidual phases, The tech-
mques of X-ray crystallography that deduce the

str , 1n which all phases must be exther 0 or
#. The method was further elaborated by Kedares-
war Banerjee in 1933 (2] and Melvin Avrami in
1938 (3} but was clearly of only hirmted value in
applications. While this early work of O, Baner-
jee and Avrami shed tmportant light on the more
general phase problem, it attracted little attention
at the time and was not further developed, it
appears now to be all but forgotten.

Solving the phase problem

My work on thts problem started 1n 1948 about
a year after 1 joned the Naval Research Labora-
tory in W, gton, DC and co ed my col-
laboration with Jerome Karle. It had been some
35 years since Friednch and Kmpping had carned
out therr famous expennment, and by 1947 the
phase problem, the central problem of X-ray
crystallography, was still unsolved and generally
regarded as unsolvable. The central mmportance of
this problem and its strong mathematical compo-
nent combined to provide a challenge that could
not be denied.

Then too, there was a certamn air of mystery
surrounding the problem. On the one hand the
simplicity and logic of the argument *“proving” its
unsolvability, even n principle. appeared to be
overwhelming. On the other hand crystal and
molecular structures were being solved, although
the structures studied were almost always very
sumple ones mvolving a small number of atoms or
larger structures contaiming one or a small number
of heavy atoms, for wkich special techmques had
been devised. It had not yet been generally under-
stood that the implicit assumption of atomicity
and the concorutant trial-and-error approach to
most structure soluttons had imposed a powerful
restriction on the permutted values of the phases,

The first important contribution that Karle and
1 made was the recogmtion that 1t would be neces-
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sary to exploit prior structural knowledge to trans-
form the phase problem from an unsolvable one
to one that was solvable, at least in principle. Our
first step 1 this direction was to explot the non-
negatvity of the electron density function p(r).
Before our analysis was complete, however, David
Harker and John Kasper published their famous
paper [4} in which they denved inequalities in
which the measured intensities restrict the possible
values of the phases. This was a very mysterious
paper, because nowhere in 1t does there appear
any explicit mention of the basis for the inequality
relations, and indeed the most important fact is
conspicuous by its absence, It is simply that the
clectron density function 1§ nonnegative every-
where. This fact 1s, however, implicit in Harker
and Kasper’s work. In very short order Karle and
I completed our own analysis and denved the
complete set of inequality relationships based on
the nonnegativity of the electron density function
[5}. 1t includes the Harker-Kasper inequalities as
a special case, and many others besides. Although
the complete set of inequalities greatly restricts the
values of the phases, the relations appear to be too
tractable to be useful in applications, except for
the simplest structures, and their potential has
never been fully exploited.

The recognition 1in 1950 and 1951 that mole-
cules consist of atoms that to a good approxima-
tion may be regarded as pomnts completely trans-
formed the nature of the phase problem. While it
meant accepting as fact that the observed diffrac-
tion intensitics by themselves were indeed not
sufficient to determine a umque electron density
function, 1t also meant that they were more than
sufficient, by far, to determne the atomic position
vectors [6]. It meant as well that the phases corre-
sponding to the point atom structure were greath
overdetermined by the available intensiues. Fi-
nally, it meant that a formidable psychological
barrier had been removed, because it now made
sense to look for a solution to the phase problem,
that is, for numerical algorithms leading from
measured intensities to individual phases. In
hindsight it is perfectly clear that owing to the
great overabundance of diffraction data, a prob-
abilistic approach is called for; some 40 years ago,
however, this was not so apparent.

Before we could even get started, an unex-
pected complication arose. It turned out that be-
cause the values of the mdividual phases clearly
depend not only on the crystal structure but also
on the choice of ongm, they are not uniquely
determined by the crystal structure alone. It fol-
lowed that the diffraction intensities alone do not
determine unique values for the phases. The pro-
cess leading from diffraction intensitics to phases
would have to include a recipe for specifying the
origin. This required that we separate out two
contributions to a phase, one due to the crystal
structure alone and one due to the choice of
onigin, We clearly needed to study how a phase 1s
transformed when the onigin 1s shifted, a problem
that was complicated by the fact that the permis-
sible origins depend on the crystallographic ele-
ments of symmetry, which were usually known n
advance.

The solution was made caster by the discovery
that there are always certain hnear combinations
of the phases, the so-called structure wvariants,
that are uniquely determined by the crystal struc-
ture alone and are independent of the choice of
onigin. It 1s therefore only the values of the struc-
ture mvanants that we can hope to estimate from
the measured intensities. Once we have estimated
a sufficicnt number of these we can then hope to
evaluate the individual phases by a process that
incorporates a recipe for specifying the ongn,

What was clearly called for was the devising of
a method for dentfying the structure invariants,
and then using these to come up with recipes for
fixing the origin appropriate to the different cle-
ments of crystallographic symmetry that may be
present. Once this was done there would remain
the task of esumating the values of the structure
invanants by means of their condittonal probabil-
ity distnbutions, assunung that an appropnately
chosen set of dilfraction intensitics 1s hnown,

Probabilistic techniques

Beyond any doubt our most important contri-
bution duning the early 1950s was the introduction
of probabilistic technques — 1n particular, use of
the jomnt probability distnbution of several dif-
fraction intensities and the corresponding phases

.
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— as the central tool in the solution of the phase
problem [7]. We assumed to begin with that all
posttions of the atoms m the umt cell of the
crystal were equally likely, or, in the language of
mathematical probability, that the atoruc position
vectors were random variables, uniformly and 1n-
dependently distributed. With this assumption the
intensities and phases of the scattered X-rays, as
functions of the atomic position vectors, are also
random varables, and one can use the methods of
modern mathematical probabulity theory to caicu-
late the joint probability distrbution of any col-
lectron of intensities and phases. A suitably cho-
sen joint probability distribution leads directly to
the conditional probability distribution of a
specified structure invariant, assumung agamn an
appropriately chosen set of diffraction intensuties.
The conditional distnibution m turn leads to the
structure nvariant, an estimate of which s given,
for example, by its most probable value. Once one
has a sufficiently large number of sufficiently reli-
able estimates of structure invariants, one can use
standard techniques to calculate the values of the
individual phases, provided that the process incor-
porates a recpe for specifying the origin,

Although probabilistic methods played an ¢s-
sential role in the development of the direct
method and provided at with 1ts logical founda-
ton, 1t must also be pointed out that non-prob-
abilistic methods also played an important part,
In this connection the carly work of Sayre (8],
Zachanasen [9], Cochran [10] and Woolfson [11}
should be mentioned. In particular the well known
Sayre equation, a relationship of fundamental im-
portance among measured magnitudes and une
known phases, continues to be useful to the pres-
ent day and lies at the heart of some of the more
successful computer programs for solving crystal
structures.

CONCLUDING REMARKS

I cannot conclude this brief account of the
early history of the direct methods of X-ray crys-
tallography without also descnbing the reception
this work received at the hands of the crystalio-
graphic community. This was, simply, extreme

skeptictsm, 1f not outright hostility. In hindsight I
think this reaction was due, first, to the strong
mathematical flavor of this early work, not well
understood by most crystallographers, as well as
the mgrained and almost umversal belief that the
phase problem was unsolvable in prninciple and
that any claim to the contrary must therefore be
flawed This nearly universal skepticism and -
ability to understand the proposed solution no
doubt explains why so few early attempts to apply
the new methods were made. It wasn’t until the
1960s, when easy to use computer programs be-
came available, that widespread applications were
made,

Today some 100000 molecular structures are
known, most determuined by the direct methods,
and about 5000 new structurcs are added to the
list every year, It s no exaggeration to say that
modern structural chenustry owes its existence to
this development.

Although no equations are shown in this arucle,
1t should be clear that the developments described
here would not have been possible without strong
dependence on mathematical techmques, in par-
ticular the modern theory of mathematical prob-
ability, and it 1s this interaction between mathe-
matics and the phase problem of X-ray crystallog-
raphy which I have tnied to emphasize i this
article. Work on the phase problem continucs to
this day and applications to structures of ever
mcreasing complexity continue to be made. It sull
appears that progress 1s made only in proportion
to our ability to bring more powerful mathemati-
cal techmiques to bear on this fascinating problem,
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Comments on “History of X-ray crystallography” by
Herbert A. Hauptman

E. Prince
Nattonal Institute of Star dards and Technology, Gaithersburg, MD 20899 (.S A )

My own carcer as a crystallographer corre-
sponds very closely with the development of direct
methods of phase deternunation. In fact my first
exposure to crystallography was in the summer of
1949 when, freshly out of college, I had a tem-
porary job in the laboratory of David Harker and
John Kasper, who had recently completed the
determination of the structure of decaborane, the
first structure to be determined ab initto from
diffraction data alone. I was an interested spec-
tator duning the early 1950s, when the work of
Herbert Hauptman and Jerome Karle was the
subject of sometimes bitter controversy, and 1
have a particularly viid memory of an American
Crystallographic Assoctation meeting that was held
at Harvard in the spring of 1954. (I can be ab-
solutely positive about the date, because 1 was
working at the time at Bell Labs, in New Jersey,

01697439/91/803 50 © 1991 ~ Elsevier Science Publishers BV,

while my francee was teaching 1n a school n the
Boston suburbs 1 had a strong mcentive to get to
that meeting ) The program at this meeting had a
series of half a dozen paper whose titles were
variations on the theme “Why the methods pro-
posed by Hauptman and Karle won’t work.” These
were followed by a paper by Clark, Evans and
Christ, of the U.S. Geological Survey, entitled
“The Structure of Colemante, Solved Using the
Methods of Hauptman and Karle,” This paper did
not completely silence the opposition (I remember
also a rather sharp exchange between Jerry Karle
and Michael Woolfson, who was later to become
one of the leaders 1n the development of direct
methods, at a meeting at Cornell 1n 1959), but
acceptance of the 1deas of direct methods had
become quite general by the early 1960s.
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Reminiscences

Abe Clearfield
Department of Chemstry, Texas A &M Unwersity. College Station, TX 77843 (U S.A.)

I remember well as a student, attending the
first presentation to the crystallographic commun-
ity, by Herb Hauptman and Jerry Karle, of their
ideas on solving the phase problem. I believe 1t
was an American Crystallographic Association
Meeting at the University of Michigan. We were
all assembled in a large auditonum and as Dr.
Hauptman has stated, the presentation was quite
mathematical. At the completion of the talks, there
was a moment of stunned silence, then many
hands shot up tc ask questions, 1 thought. Instead
cach of the then leading lights of crystallography
felt obligated to reveal their own brilliance by
putting these two young upstarts on their place.
They began to criticize the methods and tried to
point out the fallacy in the Hauptman-Karle ap-
proach, During this heated discussion, my major
professor, Dr. Philip Vaughan leaned over and
said to me “these guys really have something”.
Phil was only three years out of Cal Tech having

£169-7439/91/803.50  © 1991 = Elsevier Science Publishers BV,

worked with Linus Pauling and then worked as a
postdoc with Eddie Hughes. Phl later went on to
make his own modest contribution to ‘Direct
Methods’ but then gave up what surely would
have been a brilhant career to tahe over the family
geology instruments business.

Much later, when Herb Hauptman came to the
Medical Foundation of Buffalo, his imitial experi-
mental group included Bill Duax, who worked as
a postdoc with me, and Dave Snuth my first Ph.D.
student. Later my second Ph.D, student, Bob
Blessing, joined the group. These now semior level
scientists, along with the other bnght younger
members of the group, have solved some exceed-
ingly different problems n brological systems as
part of the overall effort to apply ‘Direct Meth-
ods’ to crystallographic problems. The power of
the method 1s still bemng developed and gives
promise of revealing to us the mntneate secrets of
both the nuneral and living worlds.
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An introduction to receptor modeling
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Abstract
Hople, P.K., 1991. An J 10 receptor modeling. Chy and Intell Laboratory Systems, 10, 21-43,
A major problem faaing air quahity | 13 the 1denull of sources of arborne particles and the

quantitative apportionment of the acrosol mass to those souucs. The ability to collect particle samples and analyze these samptes for
4 suite of clements by such technuques as nevtron awtivation analysss or X-ray fluorescence provides the data for the problem of
resolving 4 senes of Lomplex muxtures into its components based on the profiles of the efements emtted by the vanous sources in the

0169-7439/91/803.50  © 1991 = Elsevier Science Publishers BV,
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aished, If all of the sources and their composition profifes are known, then the mass balance model becomes a multiple regression
problem If a senes of samples have been analyzed without sub 1 beng lable on the sources, factor analysis

hods can be employed In both the analysis 1s comphcated by higher levels of measurement esror in these analyses than
1n typiral spectrochemucal problems, In addition, the source profiles can vary as the composition of input matenals for the emission
sources change in time Thus, there are imitations to the abihity of statistical methods to resolve sources in real world problems The

phystcal and statistical basis of these methods and their

1 INTRODUCTION

The advent of a U.S. national ambient air
quahty standard for total suspended particles
(TSPs) in the carly 1970s created the need to
wdentify particle sources so that effective control
strategies could be designed and impt i
The initial efforts at identification of particle
sources focused on dispersion models of point
sources and, in most cases, resulted in substantial
reductions in TSP levels. However, as the incre-
ment of additional control needed to reach stan-
dard levels became smaller, the model uncertain-
ties led to difficultics in identifying the actual
sources of continuing problems. In addition, fugi-
tive and other non-ducted emissions are generally
not treated or are poorly handled in these models.
Thus, additional methods were required to iden-
tify and quantitatively apportion particle mass to
sources These new methods are called receptor
models. In them, the measured properties of the
collected ambient samples are used to infer the
contributions of the sources to the ambient pollu-
tant concentration These methods require that
samples be obtained at locations of interest, recep-
tor sites, and that the samples so collected be
analyzed for the propertics that are characteristic
of the pollutant sources,

These requirements have arisen at a time when
new analytical methods have been developed that
permit multiclemental analysis of large numbers
of airborne particle samples or microscopic char-
acterization of large numbers of ndividual par-
ticles. Thus, large data bases on the composition
of airborne particles are available for usc in these
receptor models. Although much of the thrust of
the model developments have been aimed at iden-
tification of sources of particle mass, they also can
be used to elucidate the origins of the various
measured species observed in the samples. It then

to rep p will be

becomes possible to quantitauvely apportion the
observed airborne concentrations such as airborne
Iead among the various source types.

The mmportance of receptor models as air qual-
ity management tools in the U.S. has recently
been substantially increased by the promulgation
of a new ambient air quality standard for par-
tieulate matter, This new standard requires all of
the state and local air quality planming agencies to
revise their plans for improving air quality and
reducing the particulate level concentrations where
they are expected to exceed the prescribed levels
In the assocrated gurdance documents provided by
the U.S. Environmental Protection Agency (1},
receptor models are exphicitly approved for use m
this planming process along with the traditional
disperston models, Thus, receptor models have
now become an accepted part of the regulatory
process for air quality management.

This paper will outline several of the applicable
models, provide examples of therr use in appor-
tioming materials m a number of awsheds, and
demonstrate how they can identify the influence
of emissions on the overall arrborne particle con-
centrations.

2 PRINCIPLE OF MASS CONSERVATION

All of the currently used receptor models are
based on the assumption of mass conscrvation
and the use of a mass balance analysis. For exam-
ple, et us assume that the total arborne par-
ticulate lead concentration (ng, m') measured at a
site can be considered to be the sum of contribu-
tons from independent source types such as mo-
tor vehicles, incinerators, smelters, etc.

Pby = Pb, 04 Pbon + P oot 1)
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However, a motor vehicle burning leaded gasoline
emts particles contaming materials other than
lead. Therefore, the atmospheric concentration of
lead from automobiles 1 ng/cn?, Pb,,,, can be
considered to be the product of two cofactors: the
gravimetnic concentration (ng/mg) of lead n au-
tomotive particulate emussions, @py 0. and the
mass concentration (mg/m’) of automotive par-
ticles in the atmosphere, £,

Pbauto = ”P’b.aumfaum (2)

The normal approach to obtaining a data set for
receptor modeling is to determine a large number
of chemical constituents such as elemental con-
centrations in a number of samples. The mass
balance equation can thus be extended to account
for all m el in the n as contnbu-
tions from p independent sources

»
x,= ¥ auf, i=lm j=ln (3)
A=t

where x,, is the ¢th elemental concentration mea-
sured in the jth sample, a, is the gravimetric
concentration of the ith element in material from
the kth source, and f;, is the airborne mass
concentration of matenal from the kth source
contributing to the sth sample. There are several
different approaches to receptor model analysis
that have been successfully applied including
chemical mass balance (CMB) and muluvariate
receptor models cluding principal components
analysis and target transformation factor analysis
(TTFA). These models can be applied to both
particulate and gaseous spectes. The basis for each
of these methods will be presented in subsequent
sections of this paper along with examples of their
apphcation to the identification of pollution
sources in the atmosphere,

3 CHEMICAL MASS BALANCE
3.1 Introduction
The chemical mass balance (CMB) sometimes

called the chemical element balance solves eq. (3)
directly for each sample by assuming that the

number of sources and their compositions at the
receptor site are known. This approach was first
mdependently suggested ‘by Winchester and
Nifong [2] and by Miller et al. {3]. The compos:-
tion of an ambicnt sample 15 then used mn a
multuple linear regresston agamst source composi-
tions to derive the mass contribution of each source
to that particular sample, Miller et al. [3] modified
eg. (3) to explicitly include changes in compost-
tion of the source material while n transit to the
receplor

r
Xy = z axayfz, @
A=}

where a,, is the coefficient of fractionation so that
if a;; were the composition of the particles as
emitted by the source, a,, is the composition of
the particles at the receptor site (a,, = a,;a;). In
practice, it is generally impossible to determine
the a,; values and they are assumed to be unity
(ay =a)).

3.2 Previous applications

Early applications of this approach to urban
acrosol mass apportic Juded Pasad
CA (4). Heidelberg, Germany [5), Ghent, Belgium
{6}, and Chicago, IL {7}. In all of these analyses,
the quality of available source compositions
severely limited the precision to which the am-
bient compositions could be reproduced.

Several major rescarch efforts have subse-
quently resulted in substantially better source data,
The source emission studies led to much improved
resolution of the particle sources in Washington,
DC [8,9]. In one of these studies, Kowalczyk et al,
(8) used a weighted least-squares regression analy-
sis to fit 6 sources with 8 clements for 10 ambient
samples. In these analyses, the ambient elemental
concentrations are weighted by the inverse of the
square of the analytical uncertainty in that mea-
surement.

Subsequently, Kowalczyk ct al. {9] examined
130 samples using 7 sources with 28 clements
included in the fit. Although 28 clements were
used in the fitting process, the fit did not change
appreciably with varying numbers of elements m-

—
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cluded with the exception of some of the key
tracer elements such as Na, Pb, and V, Cheng and
Hopke {10) have recently examined these data
using a variety of regression diagnostics. They
found that these ‘marker” elements can be clearly
identified and therr influence on the quality of the
fit to the ambient data and the source mass contri-
butions can be quantitatively estimated.

The elemental balance sheet allows the 1dentift-
cation of the major sources of metals i the amr.
For example, vanadium and nickel primanly anse
from oil-fired power plant emissions; 23 of 25
ng/m* for V and 4.0 of 17 ng/m® for Ni with
most of the nickel unexplamed, Subsequent stud-
1es have shown that Kowalczyk et al. [9) used an
unusually low Ni/V ratio for the o1l power plant
profile which led to the underprediction of Ni
Zinc is mainly released by incinerator sources but
also comes from motor vehicles (51 ng/m’® from
refuse incmerations and 7.3 ng/m’ from motor
vehicles). The reverse 15 true for lead with motor
vehicles as the pnmary source and refuse incinera-
tion as a lesser but important source, 428 ng/m’
from motor vehicles and 34 ng/m® from mcmnera-
tion. In this way sources of both particulate mass
and specific elements can be identifted.

Mayrsohn and Crabtree (11} presented the use
of an iterative least-squares approach to apportion
6 sources of artborne hydrocarbon compounds.
The sources were automotive exhaust, volatiliza-
uon of gasoline and release of gasoline vapor,
commercial natural gas, geological natural gas,
and hquefied petroleum gas. They performed the
least-squares fit to the hydrocarbon compound
concentrattons using gas chromatography to de-
termine the concentrations of eight compounds.

commercial and geological natural gas. Thus, au-
tomobiles and other luighway-related sources were
responsible for the majority of these hydro-
carbons,

A similar study utihzing this mass balance ap-
proach for resolving hydrocarbon sources has been
made. Nelson et al [13] have examined the at-
mospheric hydrocarbons in Sydney, Austraha,
They used a much more extensive hydrocarbon
profiles for their sources and have obtained good
agreement between the mass balance approach
and a resolution based on an emussion inventory.
They also found that the major hydrocarbon
sources were direct automobile exhaust (36 & 4%)
and evaporative ermssions of gasoline (32 1 4%)
Thus, 1t was possible to identify the impact of
highway emissions on gaseous as well as par-
ticulate pollutants.

In 1979, Watson [14] and Dunker {15} mndepen-
dently suggested a mathematical formahsm called
effective vartance weighting that included the un-
certamnty in the measurement of the source com-
position profiles as well as the uncertanties in the
ambient concentrations As part of this analysis, a
method was also developed to permit the calcula-
tion of the uncertainties i the mass contributtons.
Effective-vaniance least squares has been mcorpo-
rated 1nto the standard personal computer soft-
ware developed by the U.S. EPA for receptor
modeling,

The most extensive use of effective-variance
fitting has been made by Watson and co-workers
{14,16) in their work on data from Portland, OR.
Since that study, a number of other applications
of this approach have been made including Med-
ford. OR [17), Philadelphia, PA [18,19), and at a

Their ordinary least-sq SOurce rec

algorithm recognized that not all sources may
contribute to cvery sample, and, if negative contri-
butions were obtained, a different configuration of
sources was employed with certamn qualifying as-
sumptions [12]. Each possible configuration with
positive coefficients was considered and the one
with the Towest standard error was chosen as the
optimum solution. On the average, automotive
exhaust was the source of almost 50% of observed
hydrocarbons. Gasolme and its vapor contributed
30-30% by weight and the balance resulted from

ber of locations n the U.S. Environmental
Protection Agency's Inhalable Particulate Net-
work [20).

It must be made clear, however, that the CMB
analysis works well in these examples because
both the source and ambient samples were col-
lected and analyzed duning the same time pertod.
A much less detailed resolution of lead sources
was all that was possible 1in Kellogg. 1D (21] when
onsite samples could not be obtamned. In an mnter-
comparison study organized by the U.S. Envirout-
mental Protection Agency [22] to examine recep-
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tor models, a set of ambient particulate elemental
composttional data sets were analyzed by a num-
ber of vestigators using sumlar CMB methods.
The composttions of particles from sources mn
Houston, TX, were not available and were not
measured during this program so that source com-
position profiles had to be obtained from litera-
ture sources. The lack of source data immediately
raised problems in the use of the mass balance
methods and companison of results from different
vestigators [22]. It is not always certain exactly
which sources should be mcluded i the analys:s.
Although enussion nventories may be available
for the region, it may be that the measured source
composttion for a coal-fired power plant in Mary-
fand burming eastern bituminous coal 1s not a
particularly good representation for a hignite-burn-
ing plant in Texas.

An additronal problem for receptor modeling 1s
that the motor vehucle profile in the United States
1s undergoing rapid changes in lead and bromme
concentrations with time as the new, catalyst-
equipped cars, diesel cars and trucks replace the
remaming leaded-fuel burning vehicles. An nter-
esting solution to the problem of the changing
lead concentration tn motor vehicle emissions was
recently provided by Dzubay et al, [19]. They
obtamned particle samples 1 the summer of 1982
in Philadelphia, PA and vicimty i the size ranges
of <2.5 pm and 2.5-10 pm using a dichotomous
sampler. The samples were analyzed using 1on
chromatography for sulfate and mutrate, X-ray flu-
orescence (XRF) and instrumental neutron activa-
tion analysis (INAA) for elemental composition,
and a thermo-optical method for organic and ele-
mental carbon. Because there is also a non-ferrous
metal smelter in the airshed, lead n the air comes
from incinerators, the smelter, and tailpipe emis-
sions. Using the other measured species n the
data sct, they derived the amounts of lead that
could be attnbuted to all sources other than motor
vehicles, They then used a second multiple regres-
sion analysis to relate the amount of unaccounted
Iead, total lead minus all sources other than
vehicles, to the motor vehicle source and obtained
a lead value of 6% lead in motor vehicle emisstons.
It appears that as long as sufficient leaded fuel 1s
still in use, it will be possible to employ an ap-

proach such as this one 1o obtan the current
fleet-weighted average. With leaded fuel having
been phased out entirely, the lead and bromine are
no longer useful tracers for motor vehicles 23], A
similar trend will now be starting in Furope as
lead concentrations are reduced duning the next
few years

Since motor vehicles are an important source of
particles, it 1s helpful to know that there may be
other tracers appeaning for automobiles. As part
of the Philadelphia study d d above, Olmez
and Gordon [24] identificd unusually high values
of the rare earth elements lanthanum, certum, and
samanum  ansing from the catalysis support
material from an oil refinery, It 1s likely that
sumilar matenals anse from the catalytic con-
verters m automobiles and could serve as new
markers for tailpipe emissions.

The results from Mayrsohn and Crabiree {11}
and Nelson et al. [13] suggest that a mass balance
1s applicable for the gascous aliphatic hydro-
carbons. These species along with CO could posst-
bly provide good tracers for particulate enussions
from highways, Such a result 1s less likely to be
obtamed for more reactive species like olefins,
There will be problems for semi-volaule species
hike polycyclic aromatic hydrocarbons (PAHSs) be-
cause of the partittoning of the species between
the gascous and particulate phases. This problem
has been recently reviewed by Pankow [25). The
samphing and analysts problems of reactive hydro-
carbons and the modehing needed to account for
therr reactions in transit from source to receptor
makes 1t very difficult to perform accurate recep-
tor modeling and 1s an area of study that requires
considerable additional effort.

There are alternative approaches to solving eq.
(3). For example, it can be restated as a lincar
programming problem. Cheng and Hopke [26)
have exanuned the use of the L, norm and linear
programmung approaches suggested by Hoagland
[27}, Henry et al, {28), and Henry [29). Cheng and
Hopke [26) found that a weighted, constrained
Ly-norm approach was much more stable that
either ordinary weighted least-squares or effective-
variance weighted least-squares methods at least
for the set of three data sets created for the EPA
Receptor Model Intercomparison Workshop,
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These data sets are described 1n detail by Currie et
al. {30}.

These same EPA data scts have also been re-
analyzed using non-negative, weighted least-
squares methods. In these studies, Wang and
Hopke [31] concluded that these methods do pro-
vide valuable analysis of the rank of the source
profile matrix and physically meaningful non-
negatuve mass contributions. However, they sug-
gest that the methods might lead to mcorrect
results if the proper source profiles are not used in
the fitting process. Thus, there are statistical meth-
ods that are useful for extracting estimates of the
mass contributions when both the source profiles
and the ambient concentrations are known. How-
ever, it is often the case that the measured profiles
are too stmular to one another to be successfully
resolved. Thus, other methods are needed to mn-
crease the amount of information available about
the source and ambient particles,

This other method 15 computer-controlled scan-
ning electron microscopy (CCSEM). The analysis
of microscopic features of mdwvidual particles,
such as their chenucal composition, will provide
much more information from each sample than
can be obtamned from bulk analysis, Therefore, the
abihity to perform microscopic analyses on a num-
ber of samples permits the use of CCSEM tech-
mques in receptor models, CCSEM s an extension
of individual particle characterization by optical
microscopy and scanming electron mucroscopy
(SEM). The microscope has long been employed
to determene those characteristics or features that
are too small to be detected by the naked eye. The
use of optical microscopy 1n receptor models has
been described by Crutcher [32). Optical micro-
scopic investigation of particle samples and 1ts
apphication to source apportionment have been
illustrated 1n detarl by Hopke {33). The ability of
the scanming electron microscope equipped with
X-ray detection capabilities (SEM/XRF system)
to provide size shape, and clemental constitution
data extends the utlity of microscopic examina-
tions. For example, several studies have used the
SEM in analysis of samples of coal-fired power
plant ash [34,35] and volcanic ash [36). However,
these studies are li din the ber of particles
detected, since SEM has the disadvantage of being

time-consunming to examine particles manually

CCSEM can provide an important additional
method in the area of receptor modeling. Casuccio
et al. {37} and Hopke {33} have surveyed the initial
applications of CCSEM 1 the particle elemental
investigation and 1ts ability of 1dentifying particle
sources 1n the receptor model studies. A number
of previous studies have shown that CCSEM 1s
capable of detecting the charactenstics of mndivid-
ual particles [38,39]. The significant improvement
of CCSEM 1s the couphng of a computer to con-
trol the SEM. Hence, three analytical tools are
under computer control 1 the CCSEM: (1) the
SEM, (2) the encrgy dispersive spectrometry X-ray
analyzer, and (3) the digital scan generator for
image processing {37). CCSEM rapidly exanmnes
individual particles in samples and provides their
elemental constitutions as well as their aerody-
namic diameter and shape factors. Based on these
charactenstics of each particle, particles can be
assigned to a number of well defined classes.
These particle classes become the basis for char-
acterizing sources so that accurate particle classifi-
cation becomes a key step 1n using CCSEM data
in receptor modehing.

The approach to the particle classification can
be accomplished by agglomerative, hierarchical
cluster analysis along with rule-building expert
systems. The particles with similar composition
are grouped by the cluster analysis. The sample-
to-sample difference will be clearly distinguished
by companng cluster patterns of samples. More-
over, 1t is assumed that a source emits vanous
types of particles. However, the mass fractions of
particles 1 the various particle classes will be
different from source to source and are the
fingerprint for that source. The rule-building ex-
pert system can help automate the particle class
assignments, This idea has been confirmed by the
successful work on the samples collected i El
Paso, TX [40; and particles from a coal fired
power plant [41). CCSEM analysis of individual
particles can apportion the mass of particles to
different sources in the airshed.

3.3 Hlustratwe example of CMB analysis

To illustrate the use of the CMB method, an
example will be taken from the study of Glover et
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al. [42) of the sources of airborne particulate matter
in Gramte City, IL. With the promulgation of the
new National Ambient Air Quality Standards for
Particulate Matter — 10 pm (PMyo) — 1t has
been necessary to review the State Implementation
Plan (SIP) in each state for those areas most likely
to be out of compl-ance with the new standard. In
Ilmois, one such area is Gramte City, an in-

dustr:al aity northeast of St. Louts, MO, that has a
history of total suspended particulate and airborne
fead non-attainment,

The locations of the major mdustries i Granite
City and that of the ambient airborne particulate
sampler are shown m Fig 1, the local mdustres
mclude steel nulls (American Steel and Granite
Crty Steel), a secondary lead smelter (Terracorp),

International Mill
Service

0
Mile

@ Ambient Sampler
B 1denutied Emussion Source

Z

Fig. 1. Granite Gity Jocal point sources,
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Fig 2. Point source locations in the Greater St. Louis, MO area,

an alummum smelter (SCI) and a chenucal plant
(Jenmison Wrnight). There 1s also a U.S. Army
Corps of Engineers storage facility located at the
edge of town. Fig. 2 shows the location of the
major industries in the greater St. Louis Metro-
politan area and therr location relative to the
ambient airborne particulate sampler.

As a part of the studtes necessary to prepare an
cffective and efficient SIP, receptor modeling has
been applicd to elemental compositional data for
24 h airborne particle samples taken i Gramte
City by the Ilhnois State Water Survey using an
automated dichotomous sampler. This sampler
collects particles with an anlet that excludes large
particles by having a 50% transmussion cfficiency
for 10 pm particles, The particles that penctrate
into the sampler are separated nto two aerody-
namc size fractions, < 2.5 pm (fine) and 2.5-10
pm (coarse). The particles are collected on Teflon
filters which are then available for chenucal analy-
SIS,

The particle samples were subjected to both
XRF and INAA in order to provide the input data
for receptor modeling, 48 sample pairs (fine and
coarse) were thus analyzed for 33 elements, Each
of these samples were then subjected to two CMB
analyses. For the first analysis, the source profiles
were taken from hbraries available n the htera-
ture. To supplement the source profiles available
i the literature, 12 dust samples were collected in
and around Gramite City, IL. These were acroso-
hzed, sampled, and analyzed by XRF and INAA
to prowde site speafic source profiles for the
second CMB analysis.

In an attempt to account for more of the mass
on cach ambient filter, total carbon was measured
seven times during the ambient sampling period.
A Sierra PMy, sampler equipped with quartz fiber
filters was collocated with the dichotomous sam-
pler for this purpose. Each quartz filter was
analyzed for total PAf,, mass and total carbon
mass, After the PM, mass of cach filter was
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determined, the filter was treated with HCI to
remove any carbonate. Each filter was then
onidized at 800°C, converting the elemental and
organic carbon to CO,. The amount of CO, re-
leased was measured with a Dohrmann carbon
analyzer, A linear regression was used to relate the
mass of total carbon to the total PAf;, mass of
each quartz filter. This regression is represented
by

TC =0.074 X PMy, +3.129 (5)

where TC and PM,, are both measured in pg/m,

CCSEM [37) was used to partition the total
carbon measurements between the fine and coarse
fractions. The first and last quartz filters collected
were analyzed by CCSEM. The number distribu-
tion, physical mass distribution, and aerodynamic

suifote

nafore

mass distribution of the particles on each filter
were determuned along with an elemental analysis
of the particles. The CCSEM measurements de-
termuned that the total carbon was apportioned
between the fine and coarse fractions by

TGy ™ 0.919 X TC (©)
TClapree = 0,082 X TC )

The PAM,, mass on each of the quartz filters was
scaled to the PM,, mass collected on the Teflon
disks. The mass of each pair of fine and coarse
Teflon disks was added to find the total PM,
mass on the Teflon disks. TCp,,. and TCy,,, for
the Teflon disks were found by multiplying the
scaling factor for each sample with eqgs. (6) and
(7), respectively.
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3.3.1 Initial chemical mass balance

The initial CMB analysis identified several
sources of particulate matenal in the Gramte City
area. Figs 3 and 4 show the identified source
types for the fine and coarse fraction and the
direction of each, relative to the sampler, based on
the average wind direction during the time of
sample collection Fig. 3 shows the regularity of
the hmestone and regional sulfate contnbutions to
the fine fraction. Motor vehicle emissions were
also observed to be coming from the highway to
the north. Besides these fugitive and non-point
sources, whe local steel plants and lead smelters
were observed to be major emussion sources, Fugi-
tive emussions from Gramte City Steel appear as
the urban dust coming from the southeast. The
e source to the cast 1s the galvanizing oper-

othar
sireet At
ooot

strest Ant

ations at Granite City Steel, This source 15 located
to the west of the International Mill Service com-
plex iz Fig. 1. The coal-fired power plant identi-
fied to the east is Granite City Steels’ coking
operations while Taracorp’s furnaces are the power
plant identified to the southwest, Among the more
distant source identified was a fertilizer plant
located 5 km to the south of the sampler. The
refinery complex 15 km to the north and the
copper smelter 15 km to the south also appeared
m the imtial CMB analysis results. The coal-fired
power plant that was identified to the north of the
sampler is probably the facility located between
the Mississippi and Missouri Rivers since there
are no local sources with similar characteristics in
that direction while the oil combustion source(s)
10 the southwest are the two oil-fired power plants
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in that direction. The zinc smelter 12 km south of
the sampler was expected to be a major source of
fine zinc. However, the current study did not find
appreciable amounts of zinc coming from the
south.

Fig. 4 shows the predominance of the hmestone
and urban dust in the coarse fraction along with
the local steel and lead sources. Besides the metal
emussions from the steel plant, the coking oper-
ations at Gramite City Steel appear as a combina-
ton of the sulfate emussions and coal-fired power
plant profile. As 1t was found in the fine fraction,
the galvamzing operation’s zinc emusstons and the
fead smelter’s combustion source appear to the

TABLE 1
R? adjusted for degrees of freedom

east and southwest, respectively. The coke pile(s)
wdentified to the west are at American Steel or
Taracorp. Amencan Steel 1s 1dentified by the zinc
source to the southwest and the coal sources to the
west. The oil source to the northwest is the chem-
1cal treatment facility for railroad ties at Jenmson
Wright.

The witial CMB analysis results show that the
composition of air pollution 1 the St Lows area
has changed over the last ten years. Only one fifth
of the fine profiles and one fourth of the coarse
profiles used m the first CMB analysis were taken
from the profiles denved from the 1975 to 1977
RAPS results These profiles accounted for 11 and

Sample Fine fraction values Coarse fraction values

Initial Final Change Initial Final Change
03/05/86 0978 0976 ~0002 0812 03811 -0001
03/17/86 0981 0998 0017 0959 0995 0036
03/22/86 0919 0921 0002 0947 0992 0045
03/25/86 0981 0985 0004 0683 0837 0154
04/15/86 0983 0967 ~0016 0683 0837 0154
04/18/86 0933 0993 0060 0810 0970 0160
04/21 /86 0949 0.956 0007 0941 0.950 0009
05/23/86 03891 0926 0035 0878 0983 0.105
05/23/86 0947 0960 0013 0.797 0932 0.185
05/25/86 0957 0.964 0007 0862 08s7 =0 005
05/26/86 0979 09% 0011 0670 03867 0.3¢7
07/24/86 0951 0.981 0030 0981 0991 0010
08/05/86 0878 0950 0072 0978 0.9% 0015
08/10/86 0946 0940 ~0006 0.968 09%0 0022
10/18/86 0.991 0958 ~0033 0852 0.956 0.104
10/23/86 0800 0871 0071 0931 o 0040
10/28/86 0949 0963 0015 0970 0995 0025
11/10/86 0.929 0895 «0033 0.947 0994 0047
11/11/86 0965 0,967 0002 0972 0.969 ~0003
12/03/86 0812 0848 0036 0972 o9n =000k
12/07/86 0.802 0843 0041 0805 0969 0164
01/29/87 0935 0968 -0020 0618 0619 0001
02/01/87 0947 0972 0028 0766 03822 0056
05/04/87 091 0992 000} 0838 0974 0136
05/23/87 0959 0.988 0029 0999 0.998 =-0001
03/25/87 0852 0857 0005 0742 0827 0085
06/06/87 0979 0.9% 001} 0911 0955 0034
06/12/87 0985 0983 0002 0945 0.950 0005
Average 0.936 0950 0875 0938
Avg gain 0023 0073
Avg.doss =-0016 -0 002
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20% of all of the identified fine and coarse mass,
respectively. The ining profiles used n the
current work were taken from more recent pollu-
tion source studies at various sites throughout the
Us.

3.3.2 Second chenucal mass balance

By including the local dust samples among the
potential source profiles in the second CMB anal-
ysts, a marked improvement in the qualty of the
predicted results was achieved The reanalysis did
not change the types of sources identified by the
CMB analysis. However, the apportionment be-
tween sources varied enough to cause the relative
mmportance of sources to change. The improve-
ment in the results can be seen in Table 1 where
the average value of the adjusted R? mcreased for
both fractions. (The adjustment in the R? values
was made to account for the number of different
sources that were 1dentified for each sample.) This

mcrease was especially apparent for the coarse
fractton where the average negative change was
less than one quarter of 1% while the average
posisve change was above 7%. Fig. 5 shows that
the predicted mass of the fine fraction became
closer to the observed mass with only a slight
mcrease in error. (The error 1n the mitial predicted
results was mfluenced by the use of an artificial
sulfur component, a source contaming only sulfur,
which caused the mtial eror to be fairly low.) Fig.
6 shows that the predicted mass of the coarse
fraction increased while the associated error de-
creased Fig. 7 shows that the predicted mass of
the fine fracuon fiting elements changed from an
average over-prediction to an average under-pre-
diction. Stmilar results were obtaned for the coarse
fraction samples Under-prediction is the more
desirable error since during the fitting process, it
1s more difficult to explain mass that was not
observed than to not explan all of the mass that
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had been observed. There are always other un-
identified sources that mught explain the un-
accounted for mass.

3.3.3 Total carbon results

In the CCSEM analyses, carbon was found to
be a major component of the fine fraction. How-
ever, 1n the CMB analyses, carbon was never fit
well. Lack of carbon information in many of the
source profiles compounded the problem of hav-
ing few ambient data,

3.3.4 Conclusions

By measuning ambient filters by both XRF and
INAA, a relatively complete set of elemental mea-

was ob 1. The useful of these
data was limited by the current unavailability of
source profiles mncluding these elements. The lack
of data on carbon was a special problem in the
present study since the imited ambient mnforma-
tion did 1dentify carbon as being an important
part of the fine mass. The mclusion of site-specific
profiles 1n a receptor-onented source apportion-
ment program mmproved the overall quality of the
source apportionment results from those using
only Iiterature profiles, While not identifying new
sources, the site-specific profiles sigmficantly im-
proved the R? of the coarse frction, It also de-
crease the coarse fraction’s predicted results error
values, Considening that the tmtial fine fraction
CMB required a unique sulfur factor to avhieve
the best fit, the finc fraction results are also an
indication that the better receptor modeling re-
sults are achieved by using sute-specific profiles for
fugitive enussions. The collection and analysis of
site-speaific fugitive dust profiles should be col-
lected, if possible, during the course of future
studies employing receptor models.

In many situations, locally measured source
profiles are not available or there may have been
significant changes in the particle producing activ-
ities in the airshed since the profiles were mea-
sured. Thus, it is helpful to have methods that can
extract information from the ambient data alone
as to the number, nature, and mass contributions
of the particle sources in un arca, These methods
use multivariate statistical methods to obtain the
receptor modeling information required.

4 MULTIVARIATE RECEPTOR MODELS
4.1 Introduction

Alternative approaches have been developed
for wdentifying and quantitatively apportioning
sources of airborne particles using multivanate
statistical analysis. Eigenvector analysis has been
the principal method that has been applied to
airborne particle composition data, An cigenvec-
tor analysis tries to simplify the description of a
system by determining the minimum number of
new variables necessary to reproduce the mea-
sured attnibutes of the system. The mathematical
basis of these methods has been described by
Hopke {33).

Principal components and factor analysis are
names given to several of the variety of forms of
cigenvector analysis. It was originally developed
and used in psychology to provide mathematical
models of psychological theories of human ability
and behavior {43). However, cigenvector analysis
has found wide application throughout the physi-
cal and life sciences. Unfortunately, a great deal
of confusion exists in the literature in regard to
the terminology of ecigenvector analysis. Various
changes in the way the method is applied has
resulted in it being called factor analysis, principal
components analysis, principal components factor
analysis, empirical orthogonal function analysis,
Karhunen-Locve transform, etc., depending on
the way the data are scaled before analysis or how
the resulting vectors are treated after the eigenvec-
tor analysis is completed. All of the methods have
the same basic objective; the compression of data
into fewer dimensions and the identification of the
structure of interrelationships that exist between
the variables measured or the cases studied.

4.2 Mathematical procedures

The first step in the eigenvector analysis 1s the
calculation of a dispersion matrix, the matnx that
contains quantitative information on the relative
vanatton of pairs of vanables or pairs of samples
(cases). There are two basc types of dispersion
matrices. They are covariance matrices and corre-

-
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Jation matrices. For a correlation matrix, the data
are scaled such that each variable or each case has
an equal weight. The data are not scaled before
calculating covasiance In both instances, the data
may be centered by subtracling a mean value
before scaling and the calculation of the matrix
elements. The choice of dispersion matrix depends
on the nature of the data set 1o be analyzed. For
many types of chemical spectroscopic data, the
covariance matrix is the choise because each varia-
ble has the same measurement scale. For many
geochemical problems, the difference in scale be-
tween major, minof, and trace componepts r<-
quires scaling to avoid domination of the analysis
by the major components.

The dispersion matnx is then decomposed into
a series of orthogonal vectors by the process out-
lined by Joreskog et ab. {44] so that

U'DU=A ®)

where U is the matnx of eigenvectors, U’ is its
transpose, D is the dispersion matrix, and A is a
diagonal matrix of eigenvalues where the trace of
A is equal to the trace of D. If there were no
errors in the data from which D is calculated, the
number of non-zero cigenvalues would be the di-
mensionality of the problem celled the rank of D.
The rank for the original data matrix is the same
as that for the dispersion matrix. However, experi-
mental error generally results in a number of smalt
but non-zero eigenvalues. The determination of
the number of vectors containing significant infor-
mation relative to those dominated by noise is
often a difficult one. The Jack of universally appli-
cable criteria for determining the dimensionality
of the data is a major problem in the application
of factor analysis.

In the most commonly used approach to calcu-
lating the eigenvectors, the maximum amount of
variance is packed into the first eigenvalue. The
maximum possible amount of the rematning vari-
ance goes into the second and so forth, This
compression of the information into a few compo-
nents permits much of the variation in the dota set
1o be displayed in a two- or three-dimensional
plot. For many classification problems, the first
few factors ar able to reproduce most of the data

structure and to- remove some of the noise. The
objects can then be plotted using the components
axes and thus display the features of high-dumen-
sional data in a few dimensions {45},

The compression of varance into the first fac-
tors will improve the ease with which the number
of factors can be detesmined. However, their na-
ture has now been mixed by the calculational
method. Thus, once the number of factors has
been determined. it is often useful to rotate the
axes in order to provide a more interpretable
structure.

The axis rotation can retain the orthogonahty
of the eigenvectors or cause them to be oblique.
Depending on the nitial data treatment, the axes
rotations may be in the scaled and/or centered
space or in the original varrable scale space. The
latter approach has proved quite useful in a num-
ber of chemical applications described by
Malinowski and Howery [46) and in environmen~
tal systems as described by Hopke {33].

4.3 Previous applications

“Fhe first modeling applications of classical fac-
tor analysis were by Prinz and Stratmann {47) and
Blifford and Mecher (48}, Prinz and Stratmann
{47} examined both the aromatic hydrocarbon
content of the air in 12 West German cities and
data from Colucci and Begeman [49] on the air
quality of Detroit. In both cases they found three
factor solutions and used an orthogonal varimax
rotation to give more readily interpretable results.
Blifford and Mecher (48] used a principal compo-
nent analysis with both varimax and a non-or-
thogonal rotation to examine particle compositton
data collected by the National Air Sampling Net-
work (NASN) during 1957-1961 in 30 U.S. cities.
They were genezally not able to extract much
interpretable information from their data. Since
there are a very wide vanety of particle sources
among these 30 cities and only 13 elements were
measured, it is not surprising that they were not
able to provide much specificity to their factors.

The factor analysis approach was then reintro-
duced by Hopke et al. {50] and Gaarenstroom et
al. {51} for their analysis of particle composition
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data from Boston, MA and Tucson, AZ, respec-
uvely In the Boston data for 90 samples at a
vanety of sites, six common factors were 1dents-
fied that were nterpreted as soil, sea salt, oil-fired
power plants, motor vehicles, refuse incineration,
and an unknown manganese-selemum source. The
six factors accounted for about 78% of the system
vanance. There was also a lugh umque factor for
brorne that was nterpreted to be fresh automo-
bile exhaust. Since lead was not determined, these
motor vehicle-related factor loading assignments
remain uncertain. Large umque factors for anti-
mony and selentum were found. These factors
represent emussions of species whose concentra-
tions do not covary with other elements. Subse-
quent studies by Thurston and Spengler [52] where
other elements mcluding sulfur and lead were
measured showed a similar result. They found that
the selenium was strongly correlated with sulfur
for the warm scason (May 6 to November 5). This
result 15 in agreement with the Whiteface Moun-
tan results {53] and suggests that selenium 1s an
indicator of long range transport of coal-fired
power plant effluents to the northeastern U.S,
They found lead to be strongly correlated with
bromme and readily interpreted as motor vehicle
emissions.

In the study of Tucson, AZ [51), whole filter
data were analyzed separately at each site. They
find factors that are identified as soil, automotive,
several secondary acrosols such as (NH,),SO,,
and several wnknown factors. They also dis-
covered a factor that represented the vanation of
clemental composition in their aliquots of their
neutron activation standard contaming Na, C, K,
Fe, Zn, and Mg, This finding illustrates one of the
important uses of factor analysis, screcning the
data for notsy variables or analytical artifacts.

One of the valuable uses of this type of analysss
15 in screening large data sets to dentify errors
[54). With the use of atomic and nuclear methods
to analyze environmental samples for a multitude
of clements, very large data sets have been gener-
ated. Because of the ease in obtamning these results
with compuierized s the el al data
acquired are not always as thoroughly checked as
they should be, leading to some, if not many, bad
data points. It is advantageous to have an efficient

and effective method to dentify problems with a
data set before 1t 1s used for further studies. Prin-
cipal component factor analysis can provide useful
msight into several possible problems that may
exist 1 a data set including inicrrect single values
and some types of systematic errors.

Gatz [55] used a principal components analysts
of aerosol composition and meterorological data
for St. Lows, MO taken as part of project
METROMEX [56,57]. Nearly 400 filters collected
at 12 sites were analyzed for up to 20 elements by
on-mduced XRF. Gatz {55] used additional
parameters 1n his analysis including day of the
week, mean wind speed, percent of time with the
wind from NE, SE, SW, or NW quadrants or
vanable, ventilation rate, ran amount and dura-
tion. At several sites the inclusion of wind data
permitted the extraction of additional factors that
allowed identification of motor vehicle emissions
m the presence of specific pomnt sources of lead
such as a secondary copper smelter. An important
advantage of this form of factor analysis 1s the
ability to mclude parameters such as wind speed
and direction or particle size in the analysis.

In the early apphcations of factor analysis to
particulate compositional data, 1t was generally
easy to identify a fine particle mode lead=bromine
factor that could be assigned as motor vehicle
enussions. In many cases, a calcium factor some-
umes associated with lead could be found in the
coarse mode analysts and could be assigned as
road dust. However, the problem of dimimshing
lead concentrations m gasoline discussed carher
for the CMB analysis also applies here. As the
lead and related bromine concentrations diminish,
the clearly distinguishable covanance of these two
clements 1s disappeanng. In a study of parucle
sources wm southeast Chicago, IL based on samples
from 1985 and 1986, much lower lead levels are
observed and the lead-bromine correlation 1s quite
weak [23]. Thus, the identification of highway
emusstons through factor analysis based on lead or
lead and bromine 15 becoming more and more
difficult and other analytic species are going to be
needed in the future.

A problem that exists with these forms of fac-
tor analysts is that they do not pernut quantitative
source appontment uf particle mass or of specific
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elemental concentrations. In an effort to find an
alternative method that would prowide nforma-
tion on source contributtons when only the am-
bient particulate analytical results are available,
Hopke and co-workers [58-64] have developed
target transformation factor analysis (TTFA) mn
which uncentered but standardized data are
analyzed. In this analysis, resolution similar to
that obtained from a CMB analysis can be ob-
taned. However, a CMB analysis can be made on
a single sample 1f the source data are known while
TTFA requires a series of samples with varying
impacts by the same sources, but does not require
a prion knowledge of the source characteristics.
The objectives of TTFA are (1) to determme the
number of independent sources that contnibute to
the system, (2) to identify the elemental source
profiles, and (3) to calculate the contribution of
each source to each sample.

One of the first applications of TTFA was to
the source 1dentification of urban street dust [59).
A sample of street dust was physically fractionated
by paruicle size, density, and magnetic susceptibil-
ity to produce 30 subsamples. Each subsample
was analyzed by instrumental neutron activation
analysis and atomic absorption spectroscopy to
yield analytical results for 35 elements. The num-
ber of sources 1s determined by performing an
eigenvalue analysis on the matrix of correlations
between the samples. A target transformation de-
termunes the degree of overlap between an mput
source profile and one of the calculated factor
axes, The input source profiles, called test vectors,
are developed from existing knowledge of the
enusston profiles of various sources or by an itera-
tive technique from simple test vectors {63} The
1deatified source profiles are then used in a simple
weighted least-squares determination of the mass
contributions of the sources [62).

In the analysis of the street dust, six sources
were identified including soil, cement, tire wear,
direct automobile exhaust, salt and 1ron particles.
The lead concentration of the motor vehrcle source
was found to be 15% with a lead-to-bromine ratio
of 0.39. This ratio is in good agreement with the
values obtained by Dzubay et al, [65) for Los
Angeles, CA freeways and in the range presented
by Harrison and Sturges {66] in their extensive

review of the literature. A comparison of the ac-
tual mass fractions with those calculated from the
TTFA results shows that the TTFA provided a
good reproduction of the mass distribution and
source apportronments of the street dust that sug-
gest that a substantual fraction of the urban road-
way dust is anthropogenic in origin

One of the principal advantages of TTFA is
that 1t can identify the source composition profiles
as they exist at the receptor site. There can be
changes 1n the composition of the particles in
transit from the source to the receptor and ap-
proaches that provide there modified source pro-
files should improve the receptor model results.
Chang et al. {63] have applied TTFA to an exten-
sive set of data from St. Louis, MO to develop
source composttion profiles based on a subset
selection process developed by Rhemgrover and
Gordon {67]. They sclect samples from a data base
that were heavily influenced by major sources of
each element. These samples were identified
according to the following crteria:

1. Concentration of the element m question X >
X+ Z, where X is the average concentration
of that particular element for each station and
size fraction (coarse or fine particle size frac-
tion), Z. is typically set at about three for
most ¢l and is the standard deviation of
the concentration of that element.

The standard deviation of the 6 or 12 h average
wind directions for most samples, or minute
averages for 2 h samples, taken during intensive
periods is less than 20°,

Samples that are strongly affected by emissions
from a source were identified through observation
of clustering of mean wind directions for the sam-
pling periods selected with angles pointing toward
the source.

A npumber of studies of multivanate receptor
models have used the data base from the Regronal
Air Pollution Study (RAPS) of St. Louis, MO, In
the RAPS program, automated dichotomous sam-
plers were operated over a 2 year period at 10 sites
m the St. Lowss metropolitan area. Fig. 2 shows
the location of the 10 RAPS sampling stations.
Ambient acrosol samples were collected in fine,
< 2.4 pm, and coarse, 2.4~20 pm, fractions, Sam-
ples were analyzed at the Lawrence Berkeley

|
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Laboratory for total mass by beta-gauge measure-
ments and for 27 elements by XRF. The RAPS
database contains results for almost 35000 same
ples.

Rheingrover and Gordon [67} screened the
RAPS database according to the criteria stated
above. With wind trajectory analysis, specific
emission sources could be identified even in cases
where the sources were located very close together
{671 A compilation of the sclected impacted sam-
ples was made so that TTFA could be employed
to obtain elemental profiles for these sources at
the various receptor sites.

Thus, TTFA may be very uscful in deter

4.4 Wustrative example

4.4.1 Data description

In order to demonstrate the use of TTFA for
the resolution of sources of urban aerosols, TTFA
will be applied to a compositional data set ob-
tained from aerosol samples collected during the
RAPS program m St. Louis, MO [60]. The data
for the samples collected during July and August
1976 from statron 112 were selected for the TTFA
process. Station 112 was located near Francis
Field, the football stadum on the campus of

the concentration of lead in motor vehicle emis-
sion as the mix of leaded fuel continues to change,
Multivariate methods can thus provide consider-
able information regarding the sources of particles
mcluding highway emissions from only the am~
bient data matnx. The TTFA method 1epresents a
useful approach when source information for the
area is lacking or suspect and if there is uncer-
tainty as to the identification of all of the sources
contnbuting to the measured concentrations at the
receptor site,

Further efforts have recently been made by
Henry and Kim {68] on extending eigenvector
analysis methods, They have been examining ways
10 incorporate the explicit physical constramts that
ace inherent in the mixture resolution problem
mto the analysis. Through the use of linear pro-
gramming methods, they are better able to define
the feasible region in which the solution must lic.
There exists a Iimited region in the solution space
because the elements of the source profiles must
all be greater than or equal to zero (non-negative
Source profiles) and the mass contributions of the
identified sources must also be greater than or
equal to zero, Although there has only been limited
applications of this expanded method, it offers an
important additional tool to apply to those sys-
tems where a priori source profile data are not
available, These methods provide a useful parallel
analysis with CMB (o help insure that the profiles
used are 1 ble repr ions of the sources
contributing (o a given set of samples.

Washington University, west of downtown St.
Louis, MO.

During the 62 days of July and August, filters
were changed at 12 h intervals, producing a total
of 124 samples in each the fine and coarse frac-
tions. Data were nussing for 24 pairs of samples
leaving a total of 100 pairs of coarse and fine
fraction samples. Of the 27 el determined
for each sample, a majority of the determmanons
of 10 elements had values below the detection
limits. Since a complete and accurate data set is
required to perform a factor analysis, these 10
elements were ehiminated from the analysis. For
example, arsemc was excluded because almost all
of the values were below the detection limits.
Arsenic determinations by XRF are often unrelia
ble because of an interference between the arsenic
K X-ray and the lead L X-ray. A neutron activa-
tion analysis of these samples would produce be-
tter arsenic determinations. Reliable data for ar
senic may be important to the differentiation of
coal flyash and crustal material; two matersals
with very similar source profiles. The low pers

entage of ed el can lead to distor-
tions in the scaling factors produced by the multi-
ple regression analysts. The remaining mass con-
sists primarily of hydrogen, oxygen, nitrogen, and
carbon. Although no measurements of carbon are
included in the RAPS data, that portion of the
sample mass must still be accounted for by the
resolved sources. In order to produce the best
possible source resolutions, 1t is vatal to have accu-
rate measurements of the mass of total suspended




8 Tutorial

39

particles (TSPs) as well as determinations for as
many elements as possible,

The fine and the coarse samples were analyzed
separately and only the fie-fraction results will
be reported here. In this target transformation
analysis, a set of potential source profiles was
assembled from the literature to use as initial test
vectors. In addition the set of unique vectors was
also tested

4.4.2 Results

The eigenvector analysis provided the results
presented in Table 2 Examination of the eigen-
vectors suggests the presence of 4 major sources,
possibly 2 weak sources, and noise. To begin the
analysis, a 4-vector solution was obtained. The
iteratively refined source profiles are given in Ta-
ble 3. The first 3 vectors can be easily identified as
motor vehicles (Pb, Br, regional sulfate, and
soil/flyash (S1, Al) based on their apparent cle-
mental composition,

However, the fourth vector showed high K, Zn,
Ba, and Sr was not mitially obvious as to its
ongm. The resuling mass loadings were then
calculated and the only significant values were for
the sampling periods of noon to midnight on July
4 and midnight to noon on July 5. This was July 4,
1976 and there was a bicentennial fireworks dis-
play at this location, Thus, these two highly in-
fluenced samples change the whole analysis,

To illustrate this further, Table 4 gives the
average values of the clemental composition of the
fine fraction samples for the samples with and

TABLE 2

Results of cigenvector analysis of July and August 1976 fine
fraction data at Site 112 in St, Louis, MO

Factor Eigenvalue x* Exner Average
% error
1 90, 210 0324 204
2 50 156 024 164
3 17 65 0141 129
4 13 63 0064 93
M 0.16 55 0047 /]
6 009 26 003 68
7 003 24 0027 67
H 002 24 o021 58
9 002 15 0016 49

TABLE 3

Refined source profiles for the 4 source solution at RAPS Site
112, July~-August 1976

Element  Motor  Sulfate  Flyash/  Fireworks

vehicle soil

Al 3. 09 62. 60

S 00 28 140 00
s 00 232, 14. 26
Ct 52 16 031 15,
K 00 006 43, 580
Ca 12 0006 17. 027
Ti 28 18 23 00
Mn 1.5 01 08 36
Fe 58 38 38, 9.
Ni 02 006 005 03
Cu 19 02 003 46
Zn 98 14 00 24,
Se 01 01 090 001
Br 26, 00 27 2
St 00 00 09 12
Ba 145 03 03 15,
Pb 105, 8 38 00

without the July 4 and § samples included It can
be seen that these two samples from July 4 and 5
from 100 sample set have changed the average
value of K by a factor of 2 and the average Srby a

TABLE 4

Companison of data with and without samples from July 4 and
5. RAPS Stauon 112, July and August 1976 fine fraction

Element Mean S D. (ng/m?)
With Without

Al 20 x 30 200 % 30
St 40 3 60 450 & 60
N 4370 %310 4360 £320
Ct 90 10 80 % 9
K 320 £130 150 % 9
Ca 110 = 10 110 =+ 10
Ti 63 & 13 64 % 13
Mn 17 & 3 17 & 3
Fe 20 %20 220 % 20
Ni 23 & 02 23% 02
Cu 16 & 3 15 % 3
Zn 8 % 8 %k 8
Se 27 02 2% 02
Br 140 & 9 130 % 8
St 5 & 4 Lli OF
Ba 19 % 5 15 % 4

Po 730 % 50 720 & 50
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TABLE S

Results of eigenvector analysis of July and August 1976 fine
fraction data at Stte 112 in St Lowss, MO excluding July 4 and
S data

Factor  Eigenvalue  x? Exner  Average
% error
1 87, 210 0.304 197
2 49 152 0304 197
3 20 57 0070 123
4 02 42 0050 98
S 0.1 26 0037 3
6 01 25 0029 69
7 002 26 0023 69
8 002 17 0019 67
9 0.0t 16 0015 53

factor of 5. Thus, TTFA can find strong, unusual
events in a large complex data set After dropping
the samples from July 4 and 5, the analysis was
repeated and the results are presented in Table 5
Now there are 3 strong factors, 2 weaker ones, and
a continuuna. Thus, a 5-factor solution was sought.
These results are presented in Table 6.

The target transformation analysis for the fine
fraction without July 4 and 5 indicated the pres-

TABLE 6

Refined source profiles (mg/g), RAPS Station 112, July and
August 1976, fine fraction wathout July 4 and §

Element  Vehicle Motor  Soil/ Pamnt Refuse
sulfate  flyash

Al . 11 $3. 00 00
S 00 L% 130 00 7.

S 02 240. 19. 6. 00
Q 24 B 00 46 22
K 14 16 15. 31 48,
Ca 1. 00 16. 34, 1.2
T 00 0.7 25 110. 00
Mn 00 00 0.7 48 86
Fe 00 Ll 36. 90, 36.
Ni 008 004 0042 ool 07
Cu 06 001 00 00 8.7
Zn 08 00 00 37 65,
Se 01 01 0001 02 02
Br 30. 03 2.5 00 005
St 009 001 0.15 01 0001
Ba 0.1 0035 007 28 05
Pb 107. 65 5 00 46

ence of a motor vehicle source, a sulfate source, a
soil or flyash source, a paint-pigment source, and
a refuse source. The presence of the sulfate,
paint-pigment, and refuse factors was determined
by the uniqueness test for the elements sulfur,
titanium, and zinc, respectively. In the paint-pig-
ment factor, titanium was found to be associated
with the elements sulfur, calcium, iron, and
barium. This plant used iron titanate as 1ts input
material and the profile obtained 1n this analysis
appears to be reahstic. The zinc factor, associated
with the elements chlorine, potassium, iron, and
lead, is attributed to refuse-incinerator emussions.
However, a high chlorine concentration is usually
associated with particles from refuse incinerators
[69,70}. This factor might also represent particles
from zinc and /or lead smelters.

The results of this analysis provide quite rea-
sonable fits to the elemental concentration and to
the fine mass concentratons for this system. Thus,
the TTFA provided a resolution of source types
and concentrations that appear plausible although
specific sources are not tdentified and quantita-
tively apportioned. From other studies wath other
data sets, 1t appears TTFA 1s typically able to
identify 5 to 7 source types as long as they are
reasonably distinct from one another.

5 SUMMARY

In this paper, several of the active arcas of
receptor modeling have been mtroduced. Their
abihty to determine the sources of particles m the
air can be very useful in developing air quality
management strategies and can potentially be-
come enforcement tools as well, Since receptor
models must of necessity be retrospective in na-
ture, another important use can be in the calibra-
tion and testing of the prognostic dispersion mod-
els so that prediction of changes in air quality can
serve as a more reliable basis for management
decisions. The field of receptor modeling has
grown and developed rapidly during the last
several years and can be expected to continue to
do so as methods are improved and new applica-
tions discovered.
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Abstract

Gleser, L.J, 1991, Measurement esror models. Chemometries and Intelligent Laboratory Systems, 10, 45-57.

An overview 15 given of linear measurement error models. Such models appear an many forms, including errors-in-vanables
regression and factor analysis, but are mathematically related to each other. Of particular interest to chemusts are mass balance
receptor models in which source profiles are estimated with error. A general model 1s gaven for exrors in profiles, and the attention of
cherusts 15 directed toward recent advances in statistical model fitting and numencal analysis which may be of use in estimating

source contnbutions.

1 INTRODUCTION

Measurement error models have been applied
in virtually every area of science and technology.
Perhaps most familiar to chemists are the models
of factor analysis and errors-in-variables regres-
sion models, in which the predictors (independent
variables) are observed subject to random errors
of measurement,

Although measurement error models can be
either linear or nonlinear, in the present paper
attention is confined to linear error
models. Section 2 introduces such models, indicat-
ing the wide variety of mathematical forms in
which these models can be stated. Some basic
concepts, principles and terminology are ntro-
duced, with the goal of facilitating access by
chemists to the broad statistical Iiterature dealing
with methods for fitting and analyzing measure-
ment error models,

A brief survey of available statistical estimation

0169-7439/91/803.50  © 1991 =~ Elsevier Science Publishers B.V,

methods, and related computer software, is given
in Section 3. Particularly emphasized is an ap-
proach, called “correction for attenuation’ by psy-
chometnicians, which adjusts classical regression
estimators (which ignore measurement errors i
the predictor vanables) for errors m the predic-
tors. Besides permutting use of standard al-
gorithms (both classical and more recent robust
methods), this approach also has the merit of
focusing the attention of users on ways to obtam
and use available mformation about the sources
and magmitudes of the measurement errors.

In envarc | studies, ch have used
both factor analyss and errors-in-vanables regres-
sion (which they zall effective variance calcula-
tion) to identity source contributions to environ-
mental pollution {1}, The statstical models used in
these contexts stem from lmear mass balance
equations that relate the concentrations of certain
‘acrosol propertics’ (c.g., chemical compounds) at
a receptor to the total mass contributions from the

[ A




46

Ch and Intelt Lab. y Systems &

sources. These applications will be used throughout
the paper as concrete examples of linear measure-
ment error models. In Section 4, some suggestions
for possible improvements in the models.and
methods of statistical analysis used in this arca
will be presented.

2 LINEAR MEASUREMENT ERROR MODELS

Measurement error models have in common
their attempt to descnibe situations in which the
vanables Y observed (denoted by capital Ietters)
are of mterest cnly because they reflect certain
unobservable, or latent, variables y (denoted by
corresponding lower case letters) that arc mea~
sured by Y subject to random error. That 1s,

Yayte

where ¢ 1s a random error of measurement having
mean 0 and distribution functionally unrelated to
the value of y. For the ith experimental unit or
time penod, we may have obtained measurements
WL Y on m latent variables y®, ..., yi™,
1= l,. won. Let Y (YW, Y)Y and y=
D% ey 3¥™) be m-dimensional column vectors
containmng the obsesved and latent variables, re-
spectively, Then

Yapte, 1=lu,n (1)

where the vectors e, of measurement errors have
mean vector 0 and distributions functionatly unre-
lated to the values of the latent variables ;. It is
usually assumed that the error vectors e, are inde-
pendently distributed.

In a linear measurement error model, the ele-
ments of each latent vector y; are assumed to
satisfy a common set of linear relationships. Geo-
metzically, this means that the ys, represented as
points in m-dtmensional space, all lic in a hyper-
plane 52 of dimension 7, r <m, passing through
an origin a. The dimension r of J# can be either
known or unknown; in the latter case, r 15 a basic
parameter of the model.

Three commonly used ways to restate the above

geometric description of the model in an algebraic
(parameterized) form are the following

y=Af+a, iml,...,n )
2 a

¥ (y') (I )y,2 (0) 1=1,...,n (3)

Ay=y, i=1,2,....n 4)

In egn. (3), 1, is the r-dimensional identity matrix.

The model (2) 1s the familiar model of factor
analysis, The columns of the m X r factor loading
matrix A are a basis for the hyperplane 52, while
the factor score vectors £, contain the coefficients
representing each 3, as a linear combination of
the basis elements (columns of A).

The model (3) is the model of errors-in-vari-
ables regression. Here, » of each y, serve
as predictor (independent) variables for the re-
maining m = r vanables. By renumbering compo-
nents, we can allow the predictor vanables chosen
to form the r-dimensional subvector y,, containing
the last r elements of ;. The slope matrix B.
(m—r)Xr and intercept vector a are basic
parameters of the model.

Model (4) 1s a more symmetric way of writing a
set of linear equattons relating the elements of yy,
in that no distinction is made between indepen-
dent and dependent vartables (as was done m
model (3)). This model 15 often referred to as an
implicit lincar functional relationship model. The
coefficient matrix 4, which is (m=r)Xm and
has full rank m=r, and the vector y are basic
parameters of the model,

Model (4) often results from consideration of
families of Itaneous stoch equations. In
such models, observations X,, j=1,...,J, are
made at each of 7 ume pomts ¢, It is assumed
that these observations satisfy a set of linear equa-
tions

Eau = imlul )

where (... fr,)’ 2/, are independent random
vectors having mean vector 0 and a common dis-
tribution. The X,, are quantities mternal (endoge-
nous) to a ngcn system (in econometrics, an eco-
nomic system), while the f, represent random
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influences external (exogenous) to the system that
account for the linear combinations on the left
side of eq (5) not bemg exactly equal to 0. If
J <1, and the matrix A =((g,,)) has full rank J,
we can renumber indices so that

A=(ALA,),  ApJxJofrank J
2,7 (X Xs) s W (K payoeens X))
and then (5) becomes
AZ+AW=f, t=1,..T
or
7= -A;"AZWI%‘A,"'j}
s IIW,+£*, t=1,...,T {(6)

Using classical multivariate linear regression
methods, we can find an estimator [T of IL To
estimate the original matrix A of coefficients, 1t 1s
necessary to impose restrictions. This 15 usually
done by identifying certam of the a,; as beng
equal to 0. Such restrictions on A, mply that
certain elements of A, II = A, are zero, Since A, 1s
unknown, this results in an mplict Iinear func-
tional relationship model for II, Here, the col-
umns of become the observed Y, and the
columns of IT are the latent vectors j,. Thus, the
modcl (4) is applied to estimated regression slope
matrices in a classical regression model. It 1s
this manner that measurement error models often
appear in the econometrics literature. The poten-
tial application of simdar stochastic equation
models (5), and the resulting Iinear measurement
error models (4), in chemistry and other physical
sciences should be apparent. In these models some
of the X,, variables can be measurements of vari-
ables obtained at times prior to ¢ (that 1s, lagged
values), in which case (5) has the form of an
ARIMA time serics model. A thorough discusston
of lincar simultaneous stochastic equation models,
and the related lincar measurement error models,
can be found in refs, 2-4,

In cahbration models, estimated regression
slopes can again serve as observed variables, with
true slopes acting as latent variables. For exam-
ples, suppose that we fit a linear model

Z, ot W, ke, iml...k

and obtain the least squares esumators &, B of the
intercept and slope. A new observation Z s ob-
tained, and we wish to estimate the value of W
that led to Z. Then

zZ a+ W e
df e a + | e,

»

B B €3

has the fom} of a measurement error model with
Yy =(Z. & B), yy=(a+pW,a BY. Onc way
to represent the linear restriction is mn the form

@
(1,0,~ W)y =«

Cahlibrations, and thus calibration models, are
widely used in the physical sciences and engineer-
g [5,6]. Although most calibrations mvolve
estimation of a single predictor W from a single
dependent variable Z (perhaps on many occa-
sions), multivariate calibration models are also
used [7,8] The cahbration hterature tends to em-
phasize methods based on classical linear (or ap-
proximately linear) multiple regression models, so
that the connection to measurement error models
is not widely known. Consequently, the calibra-
tion and measurement error model hiteratures have
tended to develop in parallel.

It should be added that predictor variables 1n
the physical sciences, and also the medical and
behavioral sciences, are often measured indirectly
through caltbration. This 1s a source of measure-
ment error in regresston experiments that 1s fre-
quently overlooked, at the cost of a possibly sub-

ial bias in conclusions [9]. On the other hand,
cahibration experiments provide a useful way to
assess measurement errors in predictors (Section
3.

In mass balance models, two distinct applica~
tions of linear measurement error models anse.
First, we may have measurements C, of con-
centrations of ‘acrosol property' 1 at a receptor at
time ¢ for m properties (i = 1,..., m) and T tumes
(t=1,...,T). The true concentrations ¢, are
thought to result from the mass contributions s,
of 7 sources, as represented by the linear mass
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balance model:
r
C,= Eausﬂ, i=1,...,m (=1,...,T

J=1
U]

Letting

’
Yo (Croern G+ %= (Careees )
l;:’ (:ll“"‘sﬂ)" A= ((al/))
we have the factor analysis model
Yente, E(e)=0, y=Af, (8
The intercept term « tn model (3) does not appear
here since 1t 1s usually assumed that all vanables
are centered at their sample means (The vanables
are also usually standardized by their standard
deviations — a practice about which we will have
more to say later.) In applications of this model,
the coefficients a;, of the mass balance equations
and the number r of sources are usually assumed
to be unknown.

A second application of linear measurement
error models to mass balance problems occurs
when we know the number 7 or sources, and also
have unbiased measurements (or other similar
prior nformation) for the coefficients a,; n eq.
(7). Here, only one measurement in time 15 usually
taken, so that the “aerosol properties’ are treated
as expertmental umts, That 1s, 1t 1s assumed that
we observe

C,
All .
Yo ). imli.m
Al'
where
<, 7] en
A an €2
V= = ©)
A:r al! €rret
Ee,)m0, jm1,...,r+1,and
7 a'"
¢ E“q’;"B o imlaam,
i=t a,,

B = (54,004, 5,)

This model has the errors-n-variables regression
form (2) with the slope matrix B giving the mass
contributions s,, 1 = 1,..., r, of the sources. Again,
the intercept « in model (2) does not appear since
all measured vaniables are centered at their sample
means.

2.1 Model uniqueness

Although the 1dea of linear relationships among
the latent vanables is intuitively clear (with a
concrete geometric interpretation), each of the
models used to represent or parametenze the dea
has clements of arbitranness. First, note that the
parametenzations in two of the models {(2) and
[4)] that we have described are not umiquely de-
fined. For example, in the factor analysis model
(2), we can replace A by A*=AT and f, by
£*=T"Y, for any r-dimensional mvertible ma-
trix T without changing the validity of the model

3= Al b am ATT Y+ a= A% f* +a

(Since the columns of A are a basis for the hyper-
plane H, and bases of vector spaces are not unique,
thus fact should not be surpnsing) In the htera-
ture, this nonuniqueness problem 1s called factor
indetermunacy. One can 1mpose restrictions on A
(and possibly other parameters of the model) to
remove this indeterminacy, but such restrictions
are exterior to the model (and data) and cannot be
tested. Indecd, it is common for one set of restric-
tions to be imposed for computational conveni-
ence (usunally to reduce the estimation problem to
a type of principal components analysis), and then
for investigators to search among the set of equiv-
alent parametenzations of the fitted model for one
which has meanmg in the given context. (For
example, the program VARIMAX searches to find
pernussible loadings A, in A with maximum vari
ability — either A,; is near 0 or very large)) The
extra searching that such exploratory factor analy-
s1s methods do among equivalent parameteriza-
tions of the model (2) in the attempt to find a
‘meaningful solution’ 1s not accounted for by
customary indices of accuracy (large-sample vari-
ances and covariances of the estimators). It is
entirely possible for two investigators starting with

(10) the same data and the same mitral solution for the
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parameters to arrive at quite different ‘meamngful
solutions’ (final fitted models). In confirmatory
factor analysis, on the other hand, a set of restric-
tions is imposed a’priori (usually based on previ-
ous experience with the variables being studied),
regardless of computational convenience, and then
such a model is fitted, and also tested against
other less restrictive models (particularly models
allowing a larger number of factors).

Similar comments about indeterminacy apply
to model (4). Here, the coefficient matrix A and
the vector y can be replaced by AA and Ay, for
any (m=—r)d’. snsional invertible matrix A,
without affecting the validity of the equation
defining the model. Again, restnctions needed to
identify the parameters cannot be tested by the
given data,

By imposing suitable extra-model restrictions,
one can reduce both model (2) and model (4) to
the errors-in-variables regression form (3). (This is
intuitively clear from the fact that all three models
describe the same geometric assumption that the
latent vectors y; lie in the hyperplane o) Verifi-
cation of this assertion can be found in refs, 3 and
10. However, even model (3) requires prior scp-
aration of the elements of ); into a vector of
predictor (independent) variables y;, and a vector
of dependent variables ;. In the factor analysis
model (2), this also means that the factors f; arc
identified with certain of the components of y,.
Where there is a natural such separation of varia-
bies (such as in the second mass balance model (9)
and (10) above), it is then reasonable to prefer the
model (3), since the parameters B and a are
uniquely defined by the model. However, in other
contexts, this violation of the symmetry of the
relationships among the variables causes experi-
menters some concern. For example, if it were
actually the case that y, = (3, 3@, 39), re2,
and yf® m 5y, and we chose 3y = (), i =
(2, 3™ in model (3), we would not be able to

contrast the umqueness of the hyperplane 5
which geometrically describes the hnear relation-
ships among the elements of the latent vectors )y,
1t is natural to try to parametenize 5 directly. One
way to do this is by the angles §,, y=1,.,.,m—1,
between the hyperplane 5% and any m ~ 1 of the
m axes in m-dimensional space. This approach 1s
mentioned 1n ref. 11, where it 15 applied n the
casc m=2, r=1 (a linear relationship between
two latent vartables). However, generalizations to
general m, general r, appear to be computation-
ally and analytically difficult. Further, the angles
§; are not in themselves usually of ntrmsic inter-
est.

2.2 Identifiability

Apart from questions of uniqueness of para-
meterization, there 1s also the problem of rdentify-
ing the hnear relanonships from data. This 1s
caused by the fact that we do not directly observe
the latent variables y;, but instead observe Y, m
+ ¢, Linear associations (covariance) among the
elements of the error vectors ¢, can thus be mis-
taken for (confounded with) lincar relattonships
among the clements of ), since both types of
association can result in covariation between ele-
ments of the observed Y. Consequently, assump-
tions about the form of the joint distribution of
the elements of the error vectors, e, 1s required in
order to identify the linear relationships of mnterest
(among the elements of the latent vectors ).

Because normal distnibutions are determined by
their mean vectors and covanance matrices, this
problem of identifiability always anses for nor-
mally distributed Vs. Interestingly, only normal
distributions suffer from this problem, stnce infor-
mation about latent hinear relationships can other-
wise be obtained from higher moments or cumu-
lants of the distribution [12,13]. Thus, normal
distributions in measurement crror models play

recover the lincar relationship g the el
of y,. Nevertheless, it is always true that model (3)
for some choice of j;, 3, yields one of the
permissible (equivalent) solutions (fitted models)
for models (2) and (4).

Obscrving tirz arbitrariness involved in para-
meterizing the models (even model (3)), and in

the ! role of the most ‘nonrobust’ or
‘worst-case’ distnbution (in contrast to their
‘best-case’ role in most other types of inference),
Because usc of sample higher moments or cumu-
lants in estimation is computationally cumber-
some, adds a large component of variability to

, and also requires knowledge of which
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moments or cumulants to use, the problem of
nonidentifiability in normal distributional cases
(because 1t reflects on any procedure based on
sample mean vectors and covariance matrices) is
also relevant even to sitvations where we are cer-
tain the data are not normally distnbuted.

Basically, in normal distnibutional cases, linear
relationships among the elements of y, cannot be
dentified (consistently estimated) without knowl-
edge about the error covariance matrices

T, =Cov(e,)

of the error vectors e,. This knowledge can either
come from parametnc assumptions about the Z,,
or from independent estimates of these matrnices
obtained from other experiments (calibration data)
or replications of ¥;s for fixed yis — that is,

Yl}"."i’*’et/, J=l..J

For factor analysis models, the classical as-
sumption made is that the I;s are all equal to the
same diagonal matrix. This diagonahty assump-
tion 15 usually jusuified by the behef that choice of
a large enough value of r (the number of factors)
removes all common sources of variation from the
errors.

For errors-in-variables regression models, a
wide variety of assumptions about the I;s have
been used, and software packages exist to fit many
of these models [14). The sensitivity of the result-
ing cstimates to the assumptions used is still an
open question, although some information is
available for the simple case r= 1, Common to all
of these assumpuions is the basic requirement that
the regression slopes of the elements of e, on the
clements e, arc known [15). Here, e, contains the
crrors in the observations ¥, of the Jatent depen-
dent vectors y,, and ey, contains crrors in the
observations Y, of the latent ndependent vector
32 This requirement is clearly essential, since
otherwise such regression slopes will be con-
founded with the matrix B i model (3). In most
applications of errors-in-variables regression mod-
¢ls, the measurements of ¥, and of ¥;, are made

separately, and it 1s reasonable to assume that the
regression slopes of the ¢, on the e, are zero.

2.3 Structural and functional models

An important distinction that is made in the
statistical literature on measurement error models
1s between models in which the latent vectors y,
are treated as unknown constants (functional
models), and models in which the y, are assumed
to be independent random vectors (structural
models). In the former case, the y, are themselves
parameters of the model. The fact that the number
of such parameters increases as the sample size r
increases causes major problems for statistical the-
ory. For example, maximum likelihood estimators
for the parameters of functional measurement er-
ror models need not exist {16,17]; or if they exist,
need not be consistent, No completely satisfactory
large sample optimality theory exists for func-
tional measurement error models.

In contrast, structural measurement error mod-«
els are typically parameterized by a finite number
of parameters. C Juently, cl I statistical
theory (e.g., the theory of maximum likelihood
estimation and likelihood ratio tests) can be ap-
plied. Even so, some problems remain: com-
plicated fimite sample distributions, nonexistence
of all moments of the maximum likelihood estima-
tor, etc. For example, in a strict mathematical
sense, finite-length 1 = a confidence intervals for
the parameters of lincar measurement error mod-
els ((2). (3) or (4); structural or functional cases)
do not exist [18). Commonly used confidence in-
tervals (e.g., large-sample intervals) have arbi-
tranly small coverage probability when the mea-
surement error variances are very large relative to
the spread of the true Jatent variables, (See ref.
18a for exact results in the case =1 of model
(3)) Fortunately, this theoretical result has
minimal importance in most physical science ap-
plications b practiti usually have some
idea of the magnitudes of the t errors
(and error variances) in their experiments. If not,
some useful checks to verify that large-sample
confidence intervals have desired coverage prob-
ability are available (see ref. 19, pp. 1134-1135),
Alternatively, the Creasy~Ficller method of con-
structing 1 = « confidence regions (20,21} can be
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used, although such regions will not always be
intervals,

The distinction between functional and struc-
tural measurement error models is simlar to the
distinction between fixed (designed) factors and
random factors in the analysis of variance. In
most contexts where factor analysis models are
used, investigators are willing to assume that the
factors £, (and thus the latent vectors ¥) are
random — for example, in the first mass balance
model discussed above, the factors f; represent
mass contributions from the sources and might
reasonably be assumed to vary randomly over
time. On the other hand, one would be less certain
that the proportions of mass a, 4 from the r sources
would vary randomly across’ “aerosol properties’ §
in the second mass balance model. Such latent
variables scem to be fixed characteristics of the
‘aerosol properties’. Consequently, this second
mass balance model appears to be a functional
measurement error model.

Nevertheless, arguments given in ref. 22 show
that for every functional model one can construct
a sinufarly parameterized structural model, Using
this structural model, one can more easily de-
termine restrictions insuring identifiability for the
key | of both models (structural and
functional). Further, the maximum Tikelihood
solution for the structural model (which is the best
asymptotic normal estimator of the parameters in
that model) is typically also the best asymptotic
normal estimator of the corresponding parameters
in the functional modet (22,23}, Conscquently, even
when one believes that one has a functional lincar
measurement error model, it is worth while start-
ing one's statistical analysis by studying identifi-
ability and choice of estimators for the corre~
sponding structural model. An additional ad-
vantage of adopting structural model assumptions
is that natural estimators (predictors) of the latent
variables ), based on the observed values Y, can
be defined. These are the conditional expected
values E[ ;1Y)

3 ESTIMATION AND SOFTWARE

A str 1 linear m t error model
yields a covariance structure model for the ob-

servations ¥, Since the latent varables ¥, are
random, and the model (1) assumes that the (con-
ditional) distribution of e, does not depend on y,
it follows that e, and y, are statstically indepen-
dent. Thus,

Cov(¥,) = Cov(y,) + Cov(e,)

where the assumption that ¥, varies m an 7-di-
mensional . subspace o of m-dimensional space
implies that Cov( y;) is singular of rank 7. For
example, i the factor analysis model ),

Cov(¥}} = AYA’ + D, (1)

where Y is the (common) covanance matrix of the
factor vectors f; (which are random becanse W is
random) and D, = diagonal (4, 0,,...,8,) is the
common covariance matrix of the error vectors e,

A very popular general computer program for
fitting multivariate covariance structure models of
reduced rank 1s the program LISREL VI [24]. This
program also provides estimated large-sample
variances and covariances for the resulting estima-
tors, and tests of fit for models of various ranks 7,
There is a substantial Wterature dealing with spe-
cial problems connected with this software (and
method of estimation). Many of the relevant
papers appear in the journal Pgychometrika, ale
though some significant papers in this area-also
have appeared in such journals as Biometrika,
South African Statistical Journal, and the Annals of
Mathematical Staustics. Although LISREL VI as-
sumes that the data vectors ¥, are normally dis-
tributed, the large-sample properties of the estima-
tors hold for certain nonnormal distributions, and
methods exist for adjusting the estimators and
tests for clliptical distnbutions with heavier tails
than the normal {25},

LISREL VI is available as part of the SPSS
statistical software system, or as an independent
program. A similar program, ISU FACTOR {26).
can be used with the SAS statistical software
system,

One common misconception that users of fac-
tor analysis computer software programs have is
that the sample correlations of the Y, can be used
in place of the sample covariances without effect-
ing the estimates (particularly in large samples).
This is incorrect (3,16). Although use of sample




o et e . A A AT W S b,

52

Che, and Intelt Lab y Systems &

correlations removes the problem of choice of
scale for the data, the model actually fitted is not
the same as that assumed for the lincar measure-
ment error model. Adjusting the estimates to the
correct scale does not correct for the difference in
models. Consequently, the typical use of factor
analysis in the chemical literature for the first
mass balance model discussed in Section 2 does
not necessarily find the mass contributions of the
sources as specified in the original model.
Although the errors-in-variables regression
model (3) in the structural case can be fitted using
LISREL or ISU FACTOR, alternative computer
software exists to fit this model directly. First,
there exists a substantial numerical analysis litera-

extremely large estimates, or not to converge at
all).

A third very uscful program 1s ORDPACK
[29,30]. Although this program ts somewhat limuted
in the types of hnear measurement error models
that it can handle, it has the advantage of also
being able to fit nonlinear measurement error
models of the functional type. It also incorporates
up-to-date numencal analytical optimization
methods.

Mention should also be made of robust fitting
methods for functional and structural measure-
ment error models. These methods, which use
cither Huber’s approach {31} to robust estimation
or Hampel’s outlicr-resistant theory {32] based on

ture on total least squares [27,28) dealing with
fitting functional and structural errors-in-variables
regression models under various assumptions on
the error covariance matrices X, = Cov(e;). These
approaches make use of generalized singular value
decompositions of the data matrices Y =
(Yjene» ¥,) in place of the principal-component
type analyses of the sample covariance matrix of
the ¥;s used by LISREL VI and other covariance
structure model software. This yields greater
numerical stability and reduced computational
complexity (and time). However, the range of
models that can be treated by the new total least
squares methods is somewhat limited. Such pro-
grams also do not provide large-sample measures
of accuracy for the estimators, or tests of good-
ness-of-fit,

Alternatively, the computer program SUPER
CARP {14} can handle a wide varicty of linear
errors-in-variables regression models of both func-
tional and structural type, including models in
which the error covariance matrices are heteroge-
neous (Cov(e;) = X, with the I, possibly unequal).
This program also has the advantages of produc-
ing estimated large sample variances for the cstis
mators, providing some diagnostics for goodness.
of-fit of the models, and also tests of fit. The
estimators produced by SUPER CARP incorpo-
rate methods suggested in Ref. 14 that produce
solutions that have better performance in samples
of moderate size than the maximum likelihood
algorithms (which tend to occasionally produce

s of influence of extreme observations, are
still under development, but offer the promuse of
less sensitivity to outhers and other deviant mea-
surements, Some recent references which discuss
robust approaches are refs. 33-36. In the chemical
mass balance literature, a pioneenng effort in this
direction is presented in ref. 37.

My own recent research on estimation methods
for fitting errors-m-varrables regression models has
concentrated on a type of ‘correction-for-attenua-
tion’ approach long used by psychometncians
[14,15,38). To discuss tius approach 1t is conveni-
ent to switch to a less subscripted notation for
model (3). Let ¥; be the measurements on the
latent dependent variables y; and let X, be the
measurements on the latent predictor variables x,.
Thus

y=Bxha, Ymyte, Xpmx+f o (12)

where x;, ¢, f, are independent of cach other,
E(e)=0, E(f)=0. (Note that the structural
form of the model 1s being assumed, however,
recall that good estimators for the structural model
are also good estimators for the corresponding
functional model.)

Assume that

E(x,)=p, Cov(x)=E,, Cov(f)=EZ,,

i, 2,..,n
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and let
Z=r(5,+5)" (13)
Then if the X, are normally distributed,

E[x|X])=EX,+(I,~E)p, i=1,..,n

(14)

Even if the X, are not normally distributed, the
nght-hand side of (14) is the best linear predictor
of x, given X, in the sense of mummizing the
expected squared-error loss of prediction. The ma-
trix = m (13) 1s called the reliability matnx of the
measurements X, of the latent predictor variables
x,. If = 1s known (or can be consistently esti-
mated), substuting EX,+(I,~Z)X for x, m
(12) yields a classical regression model

Y,=BZ(X,~X) + (a+BX)+e} (1)
where
ef = B(x, = EX,= (I, = E)X) +¢,

is uncorrelated with X, X. This model can now
be fit by classical least squares or robust regres-
sion methods {31) to yield estimates I\, § of I' = BZ
and §=a+ BX. Since E is known (or we have a
consistent estimator = of Z), the equations

Pmiz, f=i+B¥

can be solved for B and 4. The resulting estima-
tors B, 4 are then consistent estimators of B and
a. In the normal-X,, normal-¥, case, B and 4 are
best asymptotically normal estimators when I and
£ are fit by least squares (or maximum likclihood)
from (15), and = is either known or the maximum
likelihood estimator = of = based on the data
Xy oens X,y is substituted for Z [15), Standard con-
fidence regions for the elements of T and £ can
casily be converted to confidence regions (and
intervals) for the elements of B and a. The method
also can be cxtended to nonlinear errors-in-vari-
ables regression models {38).

The main advantage of this approach 1s ap-
parent. One can use existing statistical software

(and confidence region procedures) for classical
regression to estimate the parameters. However,
there is a price to pay — one must know or
estimate Z. As noted by Gleser {15,38), this re-
quires either rephications on the X, for each dis-
tinct x;, or the use of independent calibration data
for the X-measurements. The latter approach 1s
familiar to chemists — for example, one can ob-
serve the X;s obtained for known values of the x;
1 laboratory experiments Just how one estimates
= depends upon the context — what one is willing
to assume about the relationship of the cahbration
experiments to the experi I context in which
the measurements ¥, X, are obtained Although
extra information is required for this approach,
there is a welcome bonus, in that from = one can
determine the accuracy of estimation that can be
expected in estimating B and a (and can also spot
such potential problems as multicollinearity in the
latent variables x,). Constraints of space do not
allow further detail, so individuals interested in
this approach should consult Gleser {15,38).

4 LINEAR MASS BALANCE MODELS

As in most other real applications, mass bal-
ance models present the statistician with a choice
between the desire to reflect all sources of varia.
tion and the need for parametric simplicity. For
example, both of the mass balance models dis-
cussed 1 Section 2 assumed that the mass frac-
tions (source compositions) a,, do not vary over
time. As Cheng and Hophe (37, p.49} note, this 1s
not realistic for all sources y. Consequently, any
measurements 4, of the mass fractions a,, taken
at a particular time £, may not be valid for other
times 1 +# £,.

Cheng and Hopke 37, p.49} also pomnt out that
mass balance models are probably rever exactly
correct, since some mass may be lost due to chem.
ical reaction along the path taken by particles to
the receptor, while on the other hand there may be
contrtbutions of mass from sources not accounted
for in the model,
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A model which reflects the abovementioned
sources of variation is the following:

Ci=e,+ @,
,
o= L a,(1)s,+¢(0) (16)
=1

A,=2,0)+e, lsism, 1sjsr,
1T

Here, C,, is the measurement at the receptor of the
mass of property i at time ¢, ¢, is the true mass of
property i at time ¢, w,, reflects errors of measure-
ment in C,, and ¢(¢) is the error in the mass
balance equations due to unidentified sources and
mass lost to chemical reactions in transit. Also,
a,,(¢) is the mass fraction of property : from
source j at time ¢ This mass fraction is measured
by 4, at time ¢ =0, with error ¢,,.

In this model, all quantities are assumed to be
random. (If a,,(¢). 1 75 m, stays constant over
umes ¢ for any source 7, we will simply assume
that the variances of a,(). 1sism, 07T,
are zero) Realistically, those quantities indexed
by the time index ¢ should have a time series
correlation structure. However, as a strong sim-
phfying ption, we may that the times
¢ at which observations arc taken are sufficiently
spread out that such correlations are negligibl
yet that the underlying process is also sufficiently
stable that we can assume that the joint distribu-
tions of time-indexed quantitics are identical at
each time point ¢. Consequently, we assume that
the random matrices ((a,;(¢)) are independently
and identically distributed (ii.d.) with unknown
mean matrix A =((\,,)). Similarity, we assume
that the vectors (1) = (Sgseees 5,)"s 1™ L0, T,
of mass contributions from sources 1,....r are
idd., that the vectors ¢(£) = (¢;(th..., ¢, (1)), ¢
= 1,..., 7, are Li.d. with mean vector 0, and that
the vectors (1) = (W) .c0iWpy)s 1= 1,..., T, of
measurement errors in the €, are ii.d. with mean
vector 0,

Let

u(t) = ((a,,(0) = \,,)) = ((m,(0))) (17)

The u;,(¢) are the values of the random mass
fractions a,,(¢) centered at their means \,,. Con-

sequently, the u(t), 0<t<7T are 1ad random
matrices with Efu(?)) = 0.

We assume that the u(r), 05157, the s(1),
15t5 T, and the measurement errors w(¢) and
e, 1s1sm, 15757, are mutually statistically
mdependent. This ption is reasonable since
the variations of the mass fractions and mass
contributions are likely to be unrelated to each
other, or to errors made in measurement.

Substitution of (17) into (16) yields the follow-
mg model for the observed quanuties C,, 4,;:

r r
C}t = Z )‘l,s;t + [w:( + € + E "l/(l)s,r]
/=1 =t

= Z)\x,slr’{”gm
=t
A, =N, b (0) e, @\, f, tsism,
1gjsr, 1=1..T (18)
If we let
O = (Crreeenr Cu « 8(0) = (Brseee )
A“((“//))- /‘“((f-/))

we can wite (18) 1n vector-matnx form as

C(t)=As(t) +g(2), 1=1,..T (19)
A=A+f

The model (19) has the form of a factor analy-
s1s model, but with the important addition of an
unbiascd and ndependent estmator A of the fac-
tor loading matnx A. Such a model has not previ-
ously been constdered m the literature. However,
it should be noted that the error term g(¢) in (19)
docs not meet the requirements for classical factor
analysts, To see this, note from (18) that g(f) 1s a
function of the vector s(r) of mass contributions
from the sources, and also of the equation error
vector ¢(f) m (€, €,,,)- Stnce ¢(¢) reflects both
loss of mass due to chemical reaction (which may
be related to the total mass released nto the
environment) and also other unidentified scurces
<f mass (which may be correlated with mass pro-
duced by identified sources), any assumption that
(1) and s(r) are independent could be erroneous,
For this reason, and the previously mentioned fact
that g(¢) is a function of s(¢), the usual assump-
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tion made in classical factor analysis that s(¢) and
g(t) are independent seems to be excessively
strong. For 1y, the larg ple propertics of
classical factor analysis estimates continue to hold
under weaker assumptions concerning the jomnt
distribution of s(¢) and g(r)—see ref. 39. Never-
theless, if we obtain estimates of A and the s(z)
using classical ptions, it will be Y to
check that these (or similar) assumptions hold.
Such verification will have to be reserved for later
research

In the hght of model (19), both of the models
for lincar mass balance mentioned in Section 2
have serious deficiencies. The first (factor analy-
sis) model discussed lacks the identifiability prop-
erties of model (19), treats mass fractions a,(?) as
constant over time, and ignores the prior knowl-
edge of estimates A of the factor loading (mass
fraction) matrix A for known sources. However,
this model does share with model (19) the flexibil-
ity of allowing an unknown number of sources
additional to those explicitly modeled, and n
modeling the variation of the source mass contri-
bution vector s() over time,

The second linear mass balance model dis-
cussed in Section 2 has identiftable parameters
and incorporates estimates of A. Unfortunately,
this model is static (ignores variation in the a,,(¢)
and s, over time), and requires prior knowledge
of the number r of sources. It also makes the very
strong extra distributional assumption that (G,
Ayy-. + A,,) are independent, 1= 1,..., m.

Neither of the two models discussed allows for
random errors ¢, in the mass balance equation
due to loss of mass in transit by chemical reaction,

Due to Jack of space, it is only possible to
sketch an approach to estimation of the parame-
ters in model (19). Any such approach will require
us to model the common distributions of the error
vectors g(7) and error matrix f, particularly the
covariance matrices of their elements.

My own favored mode of approach would be
Bayesian (or empirical Bayesian) based on recent
work of Press and Shigemasu [40). These authors
provide an approximate (in large samples — here,
large T) Bayesian approach to factor analysis
using normality assumptions for the g(¢) and con-
jugate priors for the parameters (A, the common

mean vector and covanance matnx of the s(z), the
common covanance matrix of the g(z)). Using the
prior for A, and the data A=(4,)), one can
update the prior to form a posterior for A given
A. This posterior distnibution can then play the
role of the prior distrzbution of A in Press and
Shigemasu’s Bayesian analysis. Note that this1s an
approprnate way to use the mformation conveyed
by the measurements 4, ,, since these are often not
really measurements but mstead may be partly
obtained from subjective judgments of the experi-
menters. Press and Shigemasu’s analysis {40] yields
posterior modal estimators of A and posterior
mode ‘predictors’ for the source contribution vec-
tors s(¢), as well as posterior credible regions
(Bayestan confidence regions) for these quantities
and tests of fit for the model (parucularly for the
number of sources r). As already noted, 1t will be
necessary to check whether the large-T" properties
claimed for these procedures continue to hold
under the violations of classical factor analysis
assumptions which we have noted in the model
(19).

5 CONCLUDING REMARKS

A subject as vast and vaned as that of lmear

t crror models cannot possibly be

covered 1n a single survey paper. For this reason,
the comprehensive surveys in the books of Fuller
{14) and Kendall and Stuart (41} are highly recom-
mended. The present paper has highlighted com-
mon models, themes and problems n the mea-
surement error literature an the hope that this bref
mtroduction will help chemists gain access to that
literature for use m their own research, The mod-
cling and treatment of measurement (and equa-
tion) errors is a fundamental problem in the statis-
tical analysis of physical data which must be prop-
erly addressed if conclusions reached by scientists
are to be valid. Although the problems that anse
are analytical difficult, they are unavoidable. For-
tunately, some of the best nunds in science have
addressed these problems over the last fifty years,
and there are many uscful methods available to
practitioners, In the context of hnear mass balance
models, the strengths and weaknesses of two of
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these approaches have been mentioned and a new
model incorporating their strengths (in a modeling
sense) has been proposed. It is hoped that further
research on this and simlar models will yield
improvements on methods currently used to
analyze data based on linear mass balance models.
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INTRODUCTION

Professor Gleser has provided an exquisite
overview and ntegration of the error structure
and statistical modchng that may be employed to
characterize the results of modern, multivariable
chemical metrology. His demonstration of the
equivalence of three representations of the linear,
multivariate statistical relattonship — as factor
analysis (Gleser's eq. (2)), errors-in-variables re-
gression (eq. (3)), and implicit functional (eq. (4))
models — is espectally satisfymg, 1n that it makes
plain the fact that we may approach linear models
in chemistry from apparently different, yet intrin-
sically equivalent perspectives. His ‘new” model
(¢q. (19)) for treating the inevitable nonlinearities
or isfred ptions in real chemical experi-
ments should prove particularly interesting to
those involved in difficult environmental and field
studies. Finally, the essential difference between
structural and functional models reveals a basic
dichotomy: that in the physical sciences we gener-
ally find causal (functional) relationships, often
mvolving fixed-Jatent variables, yet the statistical
estimation procedures that we must usc are “satis-
factory® (in terms of existence and consistency) for
the multivariate structural models. Resolution is
promised, however, through the asymptotic behav-
ior of the estimators.

The relevance of Professor Gleser's essay to
chemical metrology follows from the facts that all
of the chemical variables that we are

our measurement systems are producing high di-
mensional data. Except for defined standards, the
‘error-free’ independent variables of classical uni-
variate chemistry are, in fact, simply unattainable
asymptotes covered by the more general linear
measurement error models. Furthermore, the divi-
sion into dependent and independent classes be-
comes increasingly problematic as the number of
variables increases,

In Gleser’s paper we have been given a funda-
mental overview of statistical issues and statistical
references. In keeping with the spirit of chem-
ometrics, I shall attempt to complement that with
some chemical approaches, assumptions, and ref-
erences.

THE METROLOGICAL CONTEXT

As noted above, effectively all of our metro-
logical parameters must be viewed as estimates,
complete with error (gencrally random and sys-
tematic). Certain charactenistics of metrology in
the physical science$, however, have important
implications for the measurement error models
discussed by Gleser. The most important of these
are: (1) theoretical and/or controlled, laboratory-
based estimates for the error-covariance matrix;
and (2) multiple levels of measurement, where

subject to error, and at a rapidly increasing pace

d quantities (latent vaniables) may be more
and more remote from the directly observed sig-
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nals of chemrcal sensors. Pont-1, already alluded
to by Gleser, means that 1n many cases the var-
ances and correlations may be precisely estimated
from physical theory or presumed distribution
functions (¢.g., Poisson), or they may be denved
from extensive, controlled laboratory evaluations.
That is, we may often supply the covanance ma-
trix at the outset, rather than estimating it with
the hnear model that we are fitting. The second
pomnt 1s illustrated by the following metrological
level-dragram:

Level Vanable

Realization

1 »: instrumental direct observation
signal (sensor response)

2 x: species-x con-  calibration, decon-
centration volution of y

3 ©:source strength/  cahbration, decon-

system property  volution of x

The essential point is that the ‘measured quanti-
ties’ appearing as parameters in the linear mea-
surement error models may themselves be the
product of modeling. As we move from level-1
toward level-3, the measurements become more
and more indirect. For example, we can never
directly observe the concentration (x) of a chem-
ical sub 5 we must compute it front a calibra-
tion model and the response of a chemical sensor.
Similarly, we cannot directly observe the strength
of a pollutant source (©) at a receptor site; we
must compute it from the computed chemical
concentration vector or matrix (x) obtained at
that site,

The importance of the multiple levels of
metrology to the application of measurement error
models is that the associated deconvolution mod-
ching of signals and concentrations can lead to
model crror (missing components, systematic
model/ parameter crror, ...) as well as correlated
esti Further on this matter will be
given under the subheadings of factor analysis and
measurement refinement.

FACTOR ANALYSIS

Factor analysis (FA) 1s employed i the physi-
cal sciences in at least three different ways. As

with cluster analysts, 1t can serve as a very useful
exploratory tool, particularly n its graphical mode,
to make inferences (or conjectures) concerning
concealed relatronships in multivanable chemical
systems [1] Using principal components projec-
trons, one can obtain rather efficient vizuahzation
of high dimensional space, and draw inferences
concerning clusters and/or classes of objects,
lower dimenstonal (lines, planes) muxture relations
among end member classes, important non-linear-
ities, and possible outliers and /or ‘unusual’ sam-
ples. Beyond pure visualization, one may seek to
simplify the representation by removing factors
(cumponents) that appear to derive largely from
noise, or perform some simple rotations to nspire
chemical insight. These applications of FA can be
extremely powerful when linked with the well-
trained eye or the inspired scientific mind. They
are replete with pitfalls, if employed as automatic
routines.

A second application of factor analysis 15 to
provide an empinical, linear approximation of the
muluvanate structure of a chemical class. Such
‘class modeling’, based on the first few principal
components of a class of ‘sumilar” chemical mem-
bers, commonly known as ‘soft modeling’, has
become one of the major descriptive and dis-
cnimmating tools for chenucal classification and
pattern recognition studies [2,3].

The third role for factor analysts 1s for linear
functional modeling. Casual use 1s ruled out m
this case. Assumptions and parametenization must
be recognized —- viz,, we are explicatly treating the
model

yaxAte )]

where y 1s the matnx (¢ X 1) of responses for a
given set of variables; x is the matnx (¢ Xy) of
pure component concentrations; A 1s a design or
chemical profile matnx (j X 1), reflecting normal-
1zed responses or spectra of pure components; and
e ts the measurement error matnx (1 X 7). (Eq. (1)
is the transpose of Gleser's FA equation; it fol-
lows the convention of putting ‘objects’ or sam-
ples by the rows of y {4}.) The fundamental chem-
ical factor analytic issue is that eq. (1) represents a
Iinear functional relationship, 1t ts nor an eigen-
vector equation. In other words, the factor score

RS
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matnx x has meaning in terms of chemical com-
ponents, having chemically charactenstic spectra
(or fingerprints or profiles) represented by the
loadmg matnx A. Thus, although FA should lead
to the proper estimate for the number of linearly
mdependent (estimable) chemucal components, ad
hoc manipulations such as VARIMAX cannot 1n
general be expected to produce chemically correct
loadings. (For one thing, chermcal profiles are
rarely orthogonal.)

It should be noted that eq. (1) is employed
broadly, not only n the area of environmental
source apportionment (‘mass balance” as used by
Gleser), but also 1n the chemical laboratory, where
the xs represent concentrations of chemical com-
ponents of the system being analyzed. These two
types of apphcation reflect levels-3 and -2 respec-
uvely of the chemucal metrology level structure
presented earlier. In both cases, residual vanance
may be employed to estimate measurement error,
or to test presumed measurement error.

Several issues related to the validity and appli-
cation of eq (1) deserve exposure. First, 1s the
number of linearly independent components, r.
Unfortunately, 7 1s rarely known, except i the
casc of single components or fully isolated compo-
nents (as in high resolutton spectrometry or chro-
matography). One of the most important func-
uons of FA, therefore, 1s to make possible an
estimate of r, given an appropriate data matrix. A
number of magic rules exist to produce such
estimates. One of the more reliable approaches
appears to be an F-test, as outlined by Malinow-
sk [5}, subject to the constraints that the errors be
homogeneous (constant vanance over all factors)
and uncorrelated. Starting with the least signifi-
cant principal component, error eigenvalues are
tested sequentially for statistical sigmificance. A
second issue, also treated in ref. 5, relates to the
testing of possible target vectors (columns of A
matrix) for significance, given the ‘abstract factor
space’ deriving from principal component analysis
(PCA). Malinowsky observes that this procedure
“brings target factor analysis from the quagnure
of heuristic reasoning to the realm of statisucal
inference.”

Target factor analysis {6] 1s one of the ap-
proaches for denving chemically meaningful fac-

tors for use with eq. (1). It speaks to the second
1ssue, namely model uniqueness, using Gleser’s
termunology. Among other recommended ap-
proaches, pcrhaps the most famous is that of “Self
modeling curve resolution’, mvented by Lawton
and Sylvestre {7) This techmque was developed
for two-component systers, and 1t works well 1f
the samples reasonably span the factor space The
extreme samples set inner hmuts for the unknown
spectra or profiles, and non-negativity constraints
set outer Iimts. If umque vanables exist for each
of the chemical components, then spectra rather
than spectral bands may be estumated. Other
workers later extended the Lawton and Syivestre
approach to three {8] or more components [9).
Uncertamties for esumated end member (isolated)
spectra have been dertved by the eiror propa-
gation technique of Roscoe and Hopke [10,11].
Other means for denving chemical factors take
into account clusterng of loadings using the van-
ance diagram technique (12}, incorporate physi-
cochemical modeling (13}, and compare denved
FA spectral windows with spectrochemical data
bases [14). For an excellent review of the several
approaches to ‘mixture (factor) analysis’ see Gem-
perline [15,16).

The question of finding mutually exclusive, fac-
tor-specific (unique) variables 1s closely related to
the ‘MLR(T)’ techmque. Here, one designs the
measurement process to contain as many unique
tracers as possible. Multiple Linear Regression on
the Tracer species then produces spectral or pro-
file estimates for the corresponding sources. This
has been especially useful i sorting out the infor-
mation contained in environmental (mass balance)
data matrices [17=19),

The third issuc. Almost without exception, ¢x-
perts with chemucal factor analysts (as embodied
m eq. (1)) recommend avording standardization of
the data matnx prior to factor analysis. This ts in
keeping with the assumption of error homogene-
ity, and Gleser's comment (Section 3) regarding
mususe of the sample correlation matnx. On the
other hand, if vamables are measured on quite
different scales, or exhibit quite different measure-
ment errors, then initial *scaling’ (standardization)
is recommended [20). That means use of a correla-
tion matrix. Quoting Mellinger [21}, “the covan-
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ance-variance matrix may be used... only when
the variables have essentially equal variances.” An
interesting discussion of the four alternatives —
centering or not, scaling or not — is given by
Malinowski and Howery [6] A device to use
standard FA software (which centers data) for FA
about the origin, for environmental source appor-
tionment, was developed by Thurston and Spen-
gler using a fictional null vector [22]

Not unrelated to the question of scaling is the
Sfourth issue, data matrix weighting. As noted by
Gleser in his discussion of identifiability, classical
FA models treat the error-covariance matrices as
though they were equal to the same diagonal ma-
trix, independent of sample. This ption gen-
erally does not hold in chemical applications, for
several reasons. The primary reason is that chem-
ical measurement error usually increases with in-
creasing concentration; and the concentration of a
given element (chemical variable) may vary widely
depending on both the relative and absolute
amounts of the predominant components in a
given sample. A log transform might help, when
the relative standard deviation is fixed. A weighted
FA solution to the problem has been offered by
Cochran and Horne {23}, where the variance for
data matrix clement y, is treated as a product
function characteristic of row-r and column-i.
These authors demonstrated that classical PCA,
which ignores this row—column dependence of the
variance, leads to incorrect results,

The fifth issue relates more specifically to
identifiability — i.ec., the confounding of covari-
ance among chemical components, with that asso-
ciated with their measurement errors. The prob-
lem derives from the fact that chemical concentra-
tions (level-2 in the metrological level diagram)
are often estimated from a least squares fit to
overlapping signals from level-1, This happens for
example in the deconvolution of a gamma ray
multip..t, and in corrections for mutval inter-
ference in optical or X-ray spectrometry, Thus the
error-covariance matrix for the response data ma-
trix used in FA is not necessarily diagonal. Per-
haps methods exist for treating known off-diago-
nal clements in FA, but untreated, they will con-
found the component estimates. Further com-
ments on this issue will be given in the section on
measurement refinement,

Sixth, and last, 1s the matter of random sam-
phng. In Section 4 of his paper, Gleser observes
that all of the quantities in the hnear mass balance
models, though containing a time index, are as-
sumed to be random, that time series correlation
should be made negligible by the sampling
strategy. This may be possible in a number of
instances, but in many chemical expeniments time
(and space) variations of chenucal component in-
tensities are turned into an advantage. One illus-
tration is found in chromatography, and the rela«
tively new technique of evolutionary factor analy-
sis [24). Here, cychc appearances and disap-
pearances of components in time-partittoned data
matrices are detected as periodically changing
numbers (r) of chemically significant principal
components. The time sequence of changes n the
number of significant components serves as the
first step in identification of species that have
different- chromatographic elution times. Clearly,
analogous temporal phenomena are associated
with the transport of atmosphenic species; so
evolutionary factor analysis could become a very
important part of linear mass balance modeling.

ERRORS-IN-VARIABLES REGRESSION

Gleser's ‘new’ model (his eq. (19)) serves as an
excellent conjunction linking the discusston of FA
and errors-in-variables regression (EVAR), for 1t
promises incorporation of the best features of
cach, while compensating for some common de-
ficiencies. Of special interest is the utilization of
both the full sample data matrix and prior esti-
mates of the factor loading matrix (chemcal spec-
tra or profiles). Classical FA ignores this prior
information, while classical EVAR treats data from
only one sample at a time. At the Quail Roost-11
Workshop on Receptor Modeling via Chemicat
Mass Balance and Factor Analysis Models, some
creative attempts were made to mcorporate these
two types of information, but no generally satis-
factory solution was put forth [25). Later analyses,
based on the same data sets, showed further crea-
tive approaches, such as linear programmung (LP)
and partial least squares (PLS) (26-28]. The PLS
solution, in fact was a two-block factor analytic
technique that related the principal eigenvectors
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of the source profile matrix to those of the sample
data matrix — i.e., as with Gleser’s new model, it
utilized all of the samples together with prior
estimates of the source profiles Comments on
other advantages of Gleser’s new model will ap-
pear mn the next section.

Returning to ‘single sample’ EVAR, it is
noteworthy that the maximum likelihood estima-
tion (MLE) for two-variable chemical problems
has long been recognized as important. MLE has
been employed especially in intercahbrations in-
volving two measured variables and in intercom-
parisons involving two laboratories. Both biased
and unbiased methods for incorporating the con-
comitant ‘crrors-in-x” are found in the chemical
literature {29,30). Multivanate manifestations are
found in the areas of multicomponent gamma ray
spectrometry and multicomponent source appor-
tionment (chemical mass balance modeling)
[31,32).

Because of the importance of this topic in mod-
ern environmental and analytical chemistry, Beebe
and Currie undertook an empirical evaluation of
popular algorithms/ software for treating the
problem {33). Specifically, the methods mentioned
in Gleser’s paper, effective variance weighted least
squares (EVWLS), orthogonal distance regression
(ODR) {34) and the MLE (structural model)
method of Fuller [35}, were tested with bi- and
trivariate data sets having known structure. De-
tatls will be found in ref. 33, but two of the
essential conclusions were that ODR was rela-
tively less precise, but unbiased, while EVWLS
gave accurate precision estimates, and was as pre-
cise as MLE, but biased. This was surprising,
because the formulation of EVWLS in ref. 32
seemed equivalent to MLE. On further reading,
however, one finds an approximation that.makes
its implementation equivalent to iteratively
weighted Ieast squares (IWLS) which is known to
produce biased estimates {29). This is a rather
serious discovery, for EVWLS is the currently
accepted method for chemical mass balance (re-
gression) calculations.

Gleser’s proposals for correcting for attenua-
tion (bias) are especially welcome, given the fore-
going observation, The reliability matrix (his eq.
(13)) and the expanded regression model error

(below ¢q. (15)) hold the key. This very facile
solution to an important class of chemical prob-
lems is all the more practicable, because it can be
applied using standard linear regression software.
The ‘price® we must pay, estimation of the reliabil-
ity matrix, is not unreasonable. As Gleser shows
in ref. 36, the covariances comprising the reliabil-
ity matrix come directly from: (a) the set of ob-
served vanable values (2,), and (b) the difference
- 2,) where E, represents the covanance ma-
trix of measurement errors These latter are the
same errors (variances) we now employ in EVWLS
and IWLS; they may be estimated through reph-
cation or ‘theory’.

MEASUREMENT REFINEMENT

In the last parts of this discussion I should hike
to comment on aspects on the problem where the
chemist can make his most important contribu-
tions, given the insights concerning measurement
error models provided by the mathematician-

tatistician This rep the synergism which 1s
the true benefit of cross-disciplinary research. By
refining the measurement process, the chenist can
reduce or eliminate errors associated with multe-
collmearity, identifiability, and certanly model
uniqueness. By model refinement, using known
physicochemical relationships, otherwise erro-
neous, linear model assumptions may be averted.

Perhaps the most obvious measurement refine-
ment relates to the relauve magnitudes of the
measurement errors across species and/or sam-
ples. (Reducing the absolute magnitudes of the
measurement errors, of course, always helps; this
should be done to the extent feasible.) Planning
measurements to control the relative magnitudes
of measurement errors 1s mteresting because 1t can
influence multicollineanty, For example, the ma-
trix to be mverted in werghted regression analysis
is A'WA, where A is the design matrix and W 1s
the diagonal matnx of weights (inverse vanances).
Altering the relative weights thus alters the ‘condi-
tion’ of this critical matrix of hinear regression. In
fact, an optimum may be achieved by maximizing
the determinant of this matrix, the Fisher infor-
mation {18). Chemical mnsight is related to this
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1ssue tn two ways: deciding which variables are
most tmportant for mcreased weight (depends on
the mux of Iikely source components), and decid-
ing how to accomphsh the ment task.
When weights depend on signal magnitude, as
they often do n chenucal measurements, then
iteration is necessary to take into account the y
dependence. The basic question 1s one of iterative,
intelligent design of the chemical measurement
process.

Closely refated 1s the issue of chemical inter-
ference and the corresponding off-diagonat ele-
ments of the sample covanance matrix. This is a
very reat 1ssue for qyeclapping spectra or chro-
matograrhic peaks 1n laboratory analysis, and it
has mmportant consequences for environmental
mass baiance studies where level-2 metrological
data (esumated cnemical corcentrations) are em-
ployed mn level-3 models. Covarsance among con-
centration estimates must be avoided for classical
FA; quoting Anderson: “an cssentiai assumption
is that the [2cror} covarmace matrix is diagonal”
[37]. To achicve s (osts money. To illustrate the
point, in air particulate receptor modeling it is
common to measure a host of element concentra-
tions using X-ray fluorescence analysis (XRF).
The method is inexpensive (ca. $40/sample) but
insensitive for certain elemeris (e.g, those with
low atomic number, such as carbon, boron), and
exhibits interferences for others (e.g., lead L-X
rays interfere with arsenic XX rays). Correction
for interference, often done by regression techs
miques, necessarily mnduces covanance between the
estimated (corrected) concentrations. A more ex-
pensive technique (by a factor of three to five),
neutron activation analysis (NAA), will often
overcome both limitations, though special inter-
[{ (dependent on nuclear propertics) may
oceur here, Unique tracer techniques g 1l

this sort that 1s both unique and absolute, one can
accomplish other ends. Namely, inexpensive
(XRF) unique tracers (mineral-corrected potas-
sium, lead) that are not absolute can be cahbrated,
thus achieving relability for a given airshed, but
at reduced cost {18,38). Reliable (orthogonal)
tracers can also be added to the design of the
overall experiment. An example is a recent EPA
sponsored study of carbonaceous aerosol sources
in Roanoke, VA, U.S.A, Here, *C was employed
m the validation/calibration mode discussed
above; this step resolved wood-burning carbon
from fossit carbon in the atmosphere. As a second
step, stable rare earth isotopes were purposely
added to label fuel oil in the area. Their signatures
provided added ‘orthogonal’ resolution of this
component of the atmospheric soot from the fossil
component from motor vehicles {39]). A statement
by Rao marvelously supports the philosophy of
such approaches to measurement refinement in
qQuite another ficld: “Possibly what is wrong with
the economists is that they are not trying to refine
their measurements or trying to measure new vari-
ables which cause economic change. That is far
more important that dabbling with whatever data
are available and trying to make predictions based
on them” {40).

MODEL REFINEMENT

Not far removed is the subject of model refine-
ment. Gleser's proposed model (¢q. (19)) speaks to
this. As recognized also by Cheng and Hopke (26},
real receptor models are not linear. There are
selective changes in particle composition during
transport, including physical effects (agglomera-
tion, settling) and chemical effects (reaction). 1
belicve that the most cffective way to account for

cost even more, but they may eluninate collinear-
sty among certain sources; and often the special-
ized, single species measurement process has no
interspecies interference. The price is higher. A
case in point is ¥*C, which we measure to unam-
biguously resolve fossil from biospheric carbon
sources (cost: ca, two to five times that of NAA).

Use of 'C illustrates measurement refinement
by paying attention to the chemical qucstglon con-
cerning what to measure. By employing a tracer of

such nonlinearitiss is to employ carefully con.
structed physicochemical models of the respective
processes, The alternative, which will not be fue-
ther discussed here, is to use chemical knowledge
and data to sclect those specics that are ‘chem-
ically robust® — i.c., conscrvative (linear) tracers
that resist change, isotopes and nonreactive gases
being classic examples. Physicoch 1 modeling
for source apportionment has been dubbed ‘hy-
brid modeling’. Examples are seen in the use of
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reaction rate constants to help model the gas-to-
particle conversion of sulfur dioxide to sulfate [41]
and the selective oxidation of polycyclic aromatic
hydrocarbons during atmospheric transport {42].
An i ng statistical chall for better rep-
resenting ‘real’ behavior, would be to describe
ndwidual source profiles (columns of the A ma-
trix, eq (1)) as empirical principal component
class models {2] to serve as prior information for
source apportionment by FA and EVAR.

Model refinement can be considered in a larger,
moie generic sense. Realizing that our models are
imperfect ‘cartoons’ or caricatures of reality gen-
erally cmphasizing (distorting?) particular per-
spectives or par Lt s ingful to con-
sider classes of models, having varying degrees of
refinement (and corresponding increases in cost).
In atmospheric chemistry, for example, we may
look beyond the relatively simple hybrid models
mentioned above, to two and three dimensional
(spatial) models of the temporal processes taking
place Such *full dynamic modeling’ relies heavily
on highest quality numerical methods, plus stats-
tics, but it must be fundamentally based on sound,
detailed physical and chemical analysis of the
system. Pertinent illustrations of such model
classes are given in Table 1, for atinospheric chem-
istry together with two other fields of endeavor.
This viewpoint was presented for atmosphenc
modeling in ref. 43, it was inspired by Hofstadter
(44].

Considerable insight into the relation between
model realism and viewpoint, and metrological
accuracy, can be gained by examining the evolu-

tion of oceanographic models Like atmospheric
models, they have been designed to describe the
state of the flurd ystem, including concentrations
and transport of.chemical constituents. In both
areas of environmental science, the simplest mod-
els frequently serve quite well for esttmation and
prediction of a limited set of parameters. In oc-
eanography, one of the dnving forces has been the
need to understand the effect of anthropogenic
carbon dioxide perturbations on the atmosphere-~
ocean system — a central problem for forecasts of
global warming. The earhest models simply treated
the spatially averaged atmosphere and world oc-
eans as two or three reservors [45,46). Far more
realistic is the box-diffusion model for vertical
transport in the ocean, which treats the upper
layer as well mixed and describes the ocean below
the thermocline as an infinite set of boxes — i.e.,
as a diffusive medium [47). This model, which sull
describes a fictittous ‘average’ ocean, has been
compared with more realistic representations of
the occan which take tnto account honzontal
transport as well as upwelling of deep ocean water
in the equatorial zone and downwelling i the
temperate and polar zones. It was found that the
box-diffusion model “gives an excellent represen-
tation of atmosphenc CO, and *CO, interactions
on tme scales up to several tens of years” and
hence near-term effects of fossil fuel combustion
on global chmate [48). Expanding the temporal
scale (to glacial times) and the number of chem-
ical variables observed required a considerably
more complex (realistic?) model. ‘Pandora’s Box’
[49] *.

TABLE t
Model refinement [ —

— — * Another, cogent illustration of envirenmental model coms
Music{#]  Atmospheric science  Occanograph pleuty and selevance has just come to my attention, from the
Muzak Linear models {19] 2.box {45,46) ficld of ground water hydrology. As with the several imperfect

{conservative tracer)  (above/below views of the occan (and the classic multiple perspectives of the
thermaocline) lephant), the lar persy of reality embodied in the
. 3 hydrological model (or “cartoon’) determined its predictive
Jazz Hybrid {26} Box-diffusion [47] validity. In thus case, a construct was created 1o descnbe the
(SO, ($11. PAH{42)  (sutface, decp occan) behavior of ground water in fractured zones, and 1t was parae
Classical 1,2, 3D dynamc, *Pandora* {49) meterized wath the most accessible observable, the fluctuating
music Teacting system (multicompartment/ ground et level, Once calibrated, the model did well at
1 flows) fredncm'\g ground water levels; bu(:whcn a new f\oc:l arose,
reality 4 port of potl it failed P (EA.

Prych, p \} ication, 1990).
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Thus, enormous advances in geochemical sam-
pling, multivanable chemical measurement, and
computational power make possible model refine-
ments that approach reality. The challenge to the
chemist and statistician, however, is to define just
what level of complexsty is appropnate — ie., to
provide guidance as to the nature and magnitude
of errors tn measurements and 1 models that are
actually relevant,
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Abstract

Thompson AM and Stewart, R W, 1991. How chq { kinetcs

hemical model. Ch s and Intell

affect computed an an P

“Latvratory Systems, 10: 69479,

Troposphenc pholochcmxcal models are used increasingly as predictive tools to assess the chemucal response of the lower
atmosphere 1o changes in physical and chemucal conditions which mﬂucnw lrace species distnbutions, Among the many uncertain-

ties 1n the modeling process are imprecisions an reaction rate data used 1n f g model ¢ Ly In this paper we
evaluate thc propagauon oI these kinetics ies to computed species distnt map h 1 model,

\B ! dify model having 72 reactions among 24 species 1§ uscd Non<chenucal sources and initiat
background concentrations are chosen to be rep of clean 1 mud-lautude air, Chemucal reaction rate data are
mostly those of the NASA Kinetics Evaluation Panel No. 8 (1987) and lncludc lmprecmons in photolysis rates and binary and
terary reactions A Monte Carlo technique 1s used to estimat in p due to the given rate
unccmmnes.

We 1n odd hydrogen species {the radicals OH and HO,) and in hydrogen peroxide ranging from 22-41%.

Uncertanties for 0, and CO are, respectisely, 17% and 30%. Odd nitrogen uncertainties range from 18% for NO to 72% for NyOs.
The smallest uncertainty is that for nitne actd at 6%, but this is neglecting uncertamties 1n physical sources and sinks, such as
g. The inty in OH (31%) 15 important when using the model to predict troposphenc ouidant levels

becausc OH d:mmines the lifetime of and

INTRODUCTION

One-dimensional photochemical models are
used (o simulate vertical profiles of trace gas dis-
tributions (0;, NO,, CO, OH, H,0,) in the atmo-
sphere. We have used a model of the troposphere
to predict.changes in atmospheric composition,
primarily levels of the oxidants Oy, OH, and H,0,,
as emissions of NO, CO, and CH, change over the
next several decades [1-3). We also use the model
to interpret trace gas measurements in selected

hropog: ly emutted trace gases.

field experiments, calculating ozone production in
convective situations {4).

In both predictive and interpretive modes, the
photochemical model gives results that are uncer-
tain at least to the degree that key photochemical
reaction rates are uncertain and mechanistic path-
ways for some reactions are not known in detail,
We have evaluated some of these effects and re-
port on an investigation of uncertainties i calcu-
lated trace gas concentrations due to the imprect-
sion of photochemical reaction rates.

Py
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A Monte Carlo method 15 used to specify sets
of photochemical reaction rates, with means and
uncertainties given from a standard tabulation of
kinetics and absorption spectra. The overall uncer-
tainty or likely range of concentrations for a given
species is determined by hundreds of runs in which
each rate coefficient is selected randomly and a
steady-state solution is computed for all species.
The Monte Carlo rate kinetics study is carried out
for one type of background chemistry, simulating
a northern mid-latitude continental environment.
Each solution describes a unique atmospheric
composition and when these are averaged to-
gether, the mean is taken as representative of this
type of chemical regime. In a related study [S] we
report on how species uncertamnties vary with mean
composition when other chemical environments
are simulated.

METHOD
Photcchemical model

A one-dimensional photochemical-kinetics
model-solves the continuity equation for the con-

centration of the rth species, ¢,, as a function of
time, £:

3 ax

52| K@z ON(2)=53 (2, O] + Bz, 1)

Lz =5z ) M

where 2 = altitude (cm, 1n our model); K(2)1s an
eddy diffusion coefficient (in cm? 51, assumed to
be time-independent); N(z) is molecular density
(em™?); x,(z, ¢) 15 mixing ratio or mole fraction
of species i. P(z, 1) and L,(z, t) are photochem-
ical production and loss terms, respectively, for
species 1. Photochemical reactions making up pro-
duction and loss include photodissociation or
thermal dissociation reactions, in which the species
i 15 a fragment formed by a unimolecular process;
bimolecular reactions between two free radicals or
a free radical and a nonradical species; and three-
body processes in which combination of two radi-
cals in concert with an energetically stabilizing
third body leads to formation of a nonradical
molecule.

Our photochemical model spans 0-15 km (the
latter taken as mean height of the tropopause)

TABLE 1

Trace gases and boundary conditions 1n photochemical model

Species Upper boundary (15 km)
0, mflux, § X 10 cm™=% s=1
o’ influx, 4% 10?em=% ¢~1

CH,, CH,0, CH,0,. CH;00H, C,H,0,,
H,0,. C;H,00H, CH,C0,, H, OH, HO,

NO,{NO 4 NO, + NOj + HNO, + HNO, + 2N,05)

H,CO, PAN, CH,CHO

co

CH,

0,
’n

CHy. CH,0, CH,0;, C;H30;, CH,CO, H, OH, HO,
NO

NO,

NO,, N;0y

PAN*

H,C0, CH,00H, CH,CHO, C;H,00H *
H,0,, HNO,, HNO, *

CH,

co

photochemical equilibrium
influx, 2.5 X 108 cm™3 ¢!
zer0 flux
troposphere-to-

{ stratosphere transfer
Lower boundary (¢ km)

deposition
deposition
photochemical equilibrium
flux
deposiuon
depaosition
deposition
deposition
deposition
fixed, 1.5 ppbv
flux

* These specics also rained out with first-order removal below 6 km,

e ————
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TABLE2
Photolysis reactions

Model Photodissociation % Standard dev., % Standard dev *,
reaction NASA/JPL 8] Monte Carlo
3 Oy +hy =0, %0 10 9.7

5 Oy 4 hw = 0, + O(*D) 40 4

5 NO, +ky=NO+ O 30 30

X HNOQ, + v = OH +NO, 30 29

X H,0; + hv=OH + OH 40 43

X% NO, + hy = NO + O, 100 83

3 NO; +hv = NO,+ O 100 81

% H,CO+ hv = H-+HCO 40 38

£ CH,OO0H + hy = OH + CH,0 40 31

Jo HNO + hv = HO, + NO, 100 89

I CH,CHO 4 hy = CH, + HCO 40 ** 37

Jia N0 & hv = NO, 4 NO, 100 82

Ty H,CO+ kv H, +CO 40 35

he C,H;O0H 4 hy = C;H,0 + OH 40 *** 37

Iy PAN + hy = CH,CO, + NO, 0% 27

* From 800 model runs.
** Specified uncertainty assumed 1 analogy with H,CO.

*** Speafied uncertainty assumed in analogy with CHyO0H.

$ Speaified uncertainty assumed n analogy with HNO,.

with 24 gnid pownts [1,6). Spacing is at 1-km inter-
vals between 1 and 15 km and on a refined grid
below 1 km to give better simulations of gradients
in the boundary layer. Several types of boundary
conditions are specified, depending on the species:
photochemical equilibrium, flux, fixed mixing
ratio, or removal at surface or tropopause with a
specified transfer velocity. We calculate vertical
profiles of 24 trace species, a standard comple-
ment of odd oxygen (0, O(*P)); odd hydrogen
(H, OH, HO,), odd nitrogen (NO, NO,, NO,,
N0, HNO,, HNO, = HO,NO;), hydrocarbons
denved from oxidation of CH, (CH,, CH,0;.
H,CO, CH,00H, CO) and C,H, and its oxida-
tion products, including peroxy acetyl nitrate
(C;H,0,, C,H,00H, CHyCHO, CH,CO,, PAN).
A list of species and boundary conditions is given
in Table 1. The set of chemical reactions used in
the model appears in Tables 2 and 3.

Eq. (1) is solved by finite differencing after
converting to a set of nonlinear algebraic expres-
sions of form:

dX -

'd)T(-f(X) 1)

T("XL X‘z- x';.---»xfu- X%; X%:---: qu---- X1
X2’ X3 X128 6]

where x| = ith species mixing ratio at altitude grid
point j; f=forcing function which is a sum of
flux divergence, and rates of chemical reaction;
ns = total number of chemical species; np = total
number of spatial grid points. The muxmg ratios
are obtained from integration of (2).

In performing sensitivity calculations, as for
example in simulating perturbed emissions or
varying reaction rate coefficients, a steady-state
version of the model is used. This means simulta-
neous solution of eqs. (2) where dX/dt =0 and
diurnally averaged reaction rates and species con-
centrations are computed according to the method
of Turco and Whitten [7). Diurnally averaged rate
coefficients and photolysis rates are used in the
steady-state version and the desired means are
approximated:

EUXIX "™ (DF)iJku;aX—/ )]
The reaction or loss term in eq. 3 is the product of
diurnally averaged species mixing ratios X, and X,
and the diurnally averaged rate coefficient is

7‘:} = (DF) iskiy “

where (DF),; is a diurnal averaging factor and k;,

R Y
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TABLE 3
Photoch rates, and
Model Bimolecular Rate and uncertainty factors
reaction feaction A-Factor E/R:BE/R 12%8)
number
2 040, =20, 80X 1073 2060 ¢ 250 115
4 0D+ N> 0+ N, 18x10°M ~(1104100) 12
s O('D)# 0, + 0 +0, 32x10°M =~ (70 & 100) 12
6 NO # Oy =» NO, %0, 20x10"R 1400 3 200 12
7 NO;%0=NO+O0, 65x10"% - (120 4 120) 11
8 NO, +0, = NO, + 0, 14%x10° P 25003 140 L1S
s NO+ NO; = NO, # NO, 17x10™% = (150 % 100) 13
) N,O;# Ny~ NO, + NO; # N 57% 10" 10600
13 O('D) + H;0~» OH + OH 221071 0% 100 12
1 O('D) + CH,~ OH + CH, 14x10°3¢ 01100 12
15 O(*'D)+ CH = H; + H,CO 14x 10" 03100 12
16 O('D)+ H; - OH+H 10X 10" 0%100 12
17 H %0y OH+0, 14% 1073 4704 200 125
19 OH %0, =+ HO, % 0, 16x 1071 9403 300 13
20 HO,+ 0, = OH +20, 11X 10734 50074500/ = 100 13
21 OH+ 0~ H+0, 22X10°M - (120 % 100) 12
22 HO, #0 = OH %0, 30x10™1 = (200 4 100) 12
23 H,0, + O~ OH + HO, 14x10% 2000 & 1000 20
24 OH + CHy= CHy + H,0 23x10°% 17004 200 12
25 HO; + NO - OH + NO; 37%x10-% - (240 3 80) 12
26 OH + CO = CO;+ H 15X x @ +06p) 03300 13
27 OH+Hy=H,0+H 55x10°1 2000 £ 400 1.2
29 OH + HNO,; - H;0 + NO, b 13
36 OH + H,0, - H;0 + HO, 33x10-2 200+ 100/~ 300 13
3 OH + HO, = H,0 4 0, 46x10~3 ~(230 2 200) 13
32 OH+O0H=-H,0+0 42x10™" 240 % 240 14
33 OH + H,CO= H;0 + HCO 10x 101 0% 200 1.28
34 HO, + HO, = H,0,+ 0, 23%10"1 (600 £: 200) 13
36 H 4 HO; =~ H; 4 0, 73x10"% 0:£200 13
37 H+HO ~ H;0+0 32x10°8 01200 13
38 H+ HO, - OH + OH 70101 03200 13
39 H,C0 4 0 - OH + HCO 34x10-0 +1600 £ 250 125
4 CH,0; +NO ~ CH,0 + NO; 42x10~"2 =(180£180) 12
2 CH,0; + HOp = CH,00H %0, L1x10=1 = (1000 % 500) 1.3
43 CH,00H + OH « CH,0; + H,0 10x10™0 03200 20
44 CH,0 +0, = H,CO + HO, 39x10mM 900 & 300 15
45 Hy# 0= OH+H $8x10-1 4200
47 HNO, 3 M =+ HO, + NO; + M 1.0% 104 10350
48 HINO,+ OH ~ H,0 + 0, +NO, 13x10°% = (3804 270/ = 500) 15
49 HCO +0, = CO+ HO, 3sx 10~ =(140 £ 140) 13
50 CiH,+ OH = CyHy # H,0 L1x 10~ 1100 £ 200 1.2
51 C3H,0; + NO = C;H,0 + NO, 42x10*2 ~(180% 180) 12
52 CyH,0 4 0 = CH,CHO + HO, 12x10°% 1356 £ 300 1S
5 CyH,0,+ HO, ~ C;H;00H + 0, 65104 = (650 % 200) 13
54 CH,CHO + OH = CH,C0, 4 H,0 60x 10~ = (250 % 200) 14
55 CH)CO,+ NO = CHy+CO, #NO; 24X 1073
57 PAN M = CH,CO,# NO, # M 63%10%2 12788 15
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TABLE 3 (contiued)

Model Three-body reaction Rate *

Reaction 5] TR

Number ks " il m

1 040, M= 0+ M (60205 X10°* 23405

3 O+0+M=0,+M 427 x10~%

10 NO+0+M=NO, +M (90£20)x10“? 15103 GOo£10)x10™ 0 %1
11 NO; + NOy 4 M~ NyO, 4+ M Q2£05)%10°%® 43413 (AS5£08)%107% 05405
18 Ho# 0,4+ M~ HO, ¢ M (7405)%107% 16405 75£400x107" 0 a1
28 OH + NO + M~ HNO; ¥ M Q26£03)x10°%Y 32407 QRAK1DXI0"Y 13413
35 OH+OH + M~ H,0,+M 69£30)%x107%  0§+20/~08 (1.0£05X10°" 10%10
40 CHy + 0, % M~ CHy0, + M @3E18)XI107T 20410 (18£02)%x107% 17417
46 HO, + NO, + M =+ HNO, + M A8£0)x10°" 32404 @7£10%x107% 14214
$6 CH;CO;#NO,# M~ PAN # M 4X 1073 ***

ko (T)[M

* Resym o(T)[M]

TF Kg(7 )M} ey

= 061 IRk TIMI R K (T) wa A200(T/300) ™" and & oo(T') = K XO(T,/300)~",

** Expression for this reaction is sum of three terms given in ref, 8.

"7 Use overall £(298) = LS,

is a bimolecular rate coefficient between species i
and j. The factors are determined from eq. 3 by
running the time-dependent model to equilibrium,
ie. to periodic 24-hour behavior, and evaluating
all the averages in (3). All the species concentra-
tions illustrated in this study are diurnally aver-
aged mixing ratios, X,.

Looking at ¢q. 3 it is clear that the diurnal
factor (DF),, depends on equilibrium concentra-
tions of specics, i.c. composition, and that as the
calculated equilibrium composition changes in re-
sponse to a different set of rate coefficients, ths
factors also change. Thus, in performing the Monte
Carlo study, a time-dependent run must be carsied
out to obtain factors self-consistent with the diur-
nally averaged X, from steady-state calculation.
The initial ‘perturbed’ set of rates coefficients is
always run with the time-dependent model and
the diurnally averaged rates are supplied to the
steady-state model for final calculation of the
diurnally-averaged (or steady-state) concentras
tions.

The expression ‘unperturbed” chemistry refers
to the atmospheric composition as simulated by
the model with the standard set of 72 reaction rate
coefficients at mean values (Tables 2 and 3).
Atmospheric measurements are used in specifica-

tion of mixing rattos or flux values for NO and
CO and for O, deposition velocity. The ‘unper-
turbed® chemical profiles simulate ‘Clean Con-
tinental’ northern mud-latitude regions: O, =44
ppbv, COm= 135 ppbv, NO,=0.20 ppbv, with
CH,; = 1,70 ppmv at the surface. Vertical proftles
of 0y, CO, NO,, and HNO; appear in Fig. 1.

Ciean Contnental (45 N)

15 T —
4 /‘/
s n/.
i 7
ok / H ;
3 { i /=0 (0tn)
s 11 i/ « €O (pob)
g \ ! —— NOx topt)
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N
H ~.
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\\- N
0 s~/
o 00 200 300 100
Mang Ratos

Fig. 1, Verueal profites of Oy, CO, HNO). and NO, typrcal of
the relatively clean t mid-latitude troposphere. Con.

centrations are given an muxing ratio by volume (mole fraction),
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Monte Carlo calculations

Method

We vary the 72-reaction set of rate cocfficients
for each model run as follows A given set of
perturbed rate coefficients 15 generated from a
random number generator and each perturbed run
is made with a different set of 72 reactions. The
set of reaction rates is based on uncertainties in
chemical rates as descnibed in the JPL/NASA
Panel 8 Evaluation {8] to derive corresponding
uncertainties in the species concentrations.

The perturbed reactions are used in the time-
dependent version of the model, which is in-
tegrated for two days to produce diurnally aver-
aged rates (4) and mixing ratios. These mixing
ratios are not ‘converged’ to equilibrium in that
the 24-hour cycle of each species is not periodic. It
would take many days of integration to achieve
this because several constituents (e g. O;, CO, and
PAN) have photochemical hfetimes over a week.
This is not computationally practical because each
day of integration takes several minutes on the
VAX 11/780 and attached processor.

We have compared dwirnally averaged rates
computed after two and ten day time dependent
model runs. The maximum difference as a per-
centage of the imprecision occurs for the photoly-
sis of N,O; (rate J,, in Table 2) and is 1.6%. Only
one other rate (rate 9 in Table 3) has a percentage
difference as great as 1%. We do not expect the
variances in species concentration computed over
a set of model runs to be sensitive to small errors
in averaged rates for each individual model, and
this approximate averaging should be adequate.

Assigmment of rate coefficient uncertainties

Most of the 72 reactions used in the photo-
chemical model have an associated uncertainty
given by the NASA panel evaluation [8). As noted
in this report, the assigned uncertainties are sub-
jective judgments of the panel and are not based
on rigorous statistical analysis because there have
been an insufficient number of laboratory investi-
gations,

We have assumed that the uncertain parame-
ters entering into reaction rate calculations have
simple probability density functions, Gaussian or

lognormal, depending on whether the parameter is
intrinsically positive or not. At the beginning of a
model run, values are selected from these distribu-
tions for each parameter entertng mnto the reaction
rate. Each run gives different values for the con-
centrations corresponding to the randumly selected
rates for that run. After a sufficiently large num-
ber of trials (runs), histograms showmg the per-
centage deviation of each species concentration
from its mean over all runs are obtaned numen-
cally for each species. We show results after 800
runs. The computed means and variances for each
species are nearly constant as runs are added at
this point, The maximum difference i the ratio of
the standard deviation in the mean from the 700
run results is for C;H,OOH which changed by
1.6% after 800 runs. Sumular calculations for stra-
tosphenic chemustry carried out by Stolarski and
coworkers show that convergence to 1-2% 1s ob-
tained after ~ 1000 runs [9,10}.

Most of the reactions used tn the photochem-
ical model fall mto one of three categories, pho-
tolysis, bimolecular, and termolecular, as noted n
the discussion following eq. (1). The uncertainties
in reaction rates are stated differently for cach
category In ref. 8 which requires some difference
in the treatment for each one.

Uncertainties in photolysis rates used n the
calculations are given as an overall fractional un-
certainty in the rate, rather than as measurement
uncertainties in the various fluxes, cross sections,
and quantum yields which determine these rates
{8}, The photodissociation reactions are given in
Table 2. We have assumed a lognormal distribu-
tion for the photolysis rates with a standard devia-
tion corresponding to the stated fractional uncer-
tainty for each,

Most second order rates are obtained from the
product of a rate coefficient and an exponential
factor containing the activation energy. The gen.
eral expression for binary rates is

k(T) = A exp(~E/RT) (5)

where k(T') is the overall reaction rate 1s the rate
cocfficient multiplying the exponential factor, £
is the activation energy, R the gas constant, and 7'
the temperature, JPL/NASA (8] give uncertainties
in activation energy, AE, as well as an uncer-
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tanty, f(298), in the overall rate at 298 K. The
overalt uncertamnty at other temperatures 1s calcu-
fated from the expression

(T) =1(298) exp | AE/R(1/T~1/298)|  (6)
For purposes of generating perturbed binary rates
for a Monte Carlo series of model runs we assume
that the overall uncertainty given n the
JPL/NASA Panel 8 Tabulation is given by an
uncertamnty in the rate coefficient A4 in eq. 5 with
A being lognormally distributed. The temperature
dependent factor in eq. 5 is always evaluated at
the standard value of the activation energy. The
JPL/NASA {8} convention is followed in Table 3,
which means that f(298)=1.2 signifies a 1+~
sigma uncertainty of 20%. Note that the column
labeled f(298) in Table 3 is the overall uncertainty
and 1s not necessarily rdentical to that which would
be computed using the stated uncertainty mn
activation energy., Temperatures 1n the 1-dimen-
sional model decrease with altitude and we have
chosen to evaluate the brnary rate uncertamties 1
eq. 6 at the surface temperature of 288 K. Thisis a
conservative assumption in that it gives smaller
rate uncertainties in model mixing ratios, but it is
reasonably good for evaluating uncertainties in the
boundary layer in which we are primanly inter-
ested.

The general expression used to evaluate termo-
lecular rates is more complicated (Table 3). The
gencral form of a termolecular reaction is A+ B
+ M~ AB+M where M is a quenching third
body. Low pressure, ko, and high pressure, k.
limiting rates are given in the form

ko(T) = k3®(T/300) ™",
koo(T) = k2(T/300)™" ™
and these are combined in a rate expression apph-

cable to general conditions of atmosphenc tem-
perature and pressure by

. ko(T)IM]
K@) = TR T MIZAL T

X 0.6 ogetkoTAMY A (TN 1 ®)
The factor {M] in eq. (8) is the concentration of

third bodies involved in the termolecular reac-
tions, specificd by the model as the sum of O, +

N,. Uncertanties are given for the coefficients
k3™, and kX and for the exponents n and m in
the temperature dependent factors. Since k3% and
k¥ must be positive they are assumed lognorm-
ally distributed, but the exponents n and m may
be assumed normally distributed. The overall rate
is thus a function of four random variables and
the nature of its distnibution does not follow 1m-
mediately from the assumptions, as does that of
the binary rate, though it 1s clearly always posi-
tive.

RESULTS AND DISCUSSION
Reaction rate uncertainties

Variability in some of the reaction rates -
portant in the odd hydrogen balance of the tropo-
sphere is shown in Fig. 2. Fig. 2a shows the
distribution in the rate of photolysis of ozone to
produce O('D) which initiates most tropospheric
photochemistry:

O, = hy(A = 295-310 nm) = O('D) + O,

The stated uncertainty in this rate 1s 40% and a
lognormal distribution is assumed for photolysis
reactions. Here apparent lognormality and an un-
certainty close to the one given in JPL/NASA (8)
are recovered from the numerical results, Fig, 2b
shows the distribution of the O(*D) + H,0 reac-
tion which is the pnmary source of tropospheric
OH.

Fig. 2¢ shows the distribution of the termolecu-
lar rate for the reaction OH + OH + M - H,0, +
M forming hydrogen peroxide. Although the dis-
tribution appears somewhat skewed towards posi-
tive values we cannot characterize it as lognormal
since, as noted previously, it results from a rela-
tively complicated relationship among four ran-
dom variables. Indced, the termolecular distribu-
tions we have cxamined appear to be more sym-
metric about their means than would be the case if
strictly lognormal,

] .
Computed ¢ uncer

Fig. 3 shows the calculated vanability n odd
hydrogen species, OH and HO,, and in hydrogen

e s
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peroxide, H;O,. All deviations greater than 100%
above the mean are placed in the rightmost verti-
cal bar on these histograms plots. We expect the
variance of OH and HO, to be relatively large
since they participate in more reactions than any
other species. Hydrogen peroxide is readily ab-
sorbed in cloud droplets and may be an important
component in the liquid phase production of
sulfate and consequent decrease in droplet pH
{11,12). We note that wet removal of H,0, is
included in our model continuity equations for
H,0; as a first order rate coefficient but this rate
is not varied. We have previously explored the
possibility of increases in future peroxide levels
resulting from projected changss in methane and
CO emissions and from possible climate changes
[3,13). We estimate global chaage for H,0, re-
sponding to continuing 0.5-1%/yr CO-and CH,
increases to be about 20% over thé uext fifty years
{13). The present study would imply that this
change is smaller than the model’s precision for
computing H,0, under a given set of conditions.
Fortunately, we can make atmospheric measure-
ments of key species (O3, CO) to better precision
than we compute in the Monte Carlo study and
this suggests that we can improve on the calcu.
lated uncertainties for all species by constraining
the model with observations (5}.

Fig. 4 shows the calculated variability in mem-
bers of the odd nitrogen family, nitric oxide (NO),
nitrogen dioxide (NQ,), and nitric acid (HNGQ,).
The uncertainty in HNO, is one of the smallest
oocurring in our calculations. As for Hy0,, uncer-
tainties in HNO; due to rainout are not included
in this study. These are likely to substantially
increase the HNO, variance [14).

Fig. 5 shows the calculated variability of ozone
(O;) and carbon monoxide (CO). These species
are less reactive than free radicals, peroxides or
acids, We expect smaller variability for O, due to
rate uncertainties because external sources of O,
as well as chemical reactions, are important to its
atmospheric distribution, A fixed flux into the
troposphere is assumed for ozone at the
tropopause, The uncertainty at the surface is 17%.
The uncertainty for CO is higher, ~31%, even
though an upflux of CO is very important to
boundary layer CO. The reason is a fractional
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© s SUMMARY
Estimated imprecisons in chemical reactions
o 7 rates important mn tropospheric photochenustry
have been used to estimate the resulting uncer-
_ & T tainty in model calculated trace species distnbu-
1 tions. A Monte Carlo approach is used with tabu-
§ 6f 7 lated kinetics imprecisions specified for 72 reac-
= tions. The tabulated imprecisions are reproduced
4} E closely by the model after several hundred model
runs and the propagated uncertainty in 24 trace
2L E constituents is calculated. Uncertainties for ozone
and carbon monoxide are 17% and 31%, respec-
: Ly tively. For CO this 1s 2-3 times greater than the

- PO T )
0 20 40 60 8 W0 120 KO KO

imprecision which typically affects CO measure-
Muxing Ratios.

ments in the atmosphere,

() Odd nitrogen uncertainties are ~ 20% for NO
and NO, and only 6% for HNO, because impreci-
sion in precipitation scavenging, an important loss
for nitric acid, has not been included in the study.
Hydroxyl radical (OH) has a computed uncer-
1 tainty of 31%, which somewhat lumits the model
assessment capability for precise evaluation of
oxidant changes.

In a related study (5} we report on correlation
analysis between rates and species to identify those
reactions which contribute most to the vanance of ’
selected specics. This also helps in developing
n-situ measurement strategies {o reduce the over-
all computational variance fouhd in the present
L study and in identifying the photochemical
processes at which further laboratory investigation
might be most effectively directed.

Attude (km)

200 200
Mixing Ratos
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Abstract

Jurt. P.C. and Lawson. R.G. 1991, Analysis of ch §

and Intell Lab r Systems, 10, 8183,

1 actaty rel hrps using cf hod:

The imp of calculating clusten dency of a data set as part of a compl hodology 1s descnbed., A new method for
aluating the clustering tendency 1$ mustmed with artificially clustered, random, and actual chclmcal data sets. This new index 1s

shown 10 be more useful than lhc original one,

Cluster analysis is a usefnl.and increasingly
popular method for exploring data represented in
high-dimensional spaces. Questions that cas. be
approached using cluster analysis arise in phar-
maceutical and agricultural chemistry in the con-
text of structure-activity relatic aships. For exam-
ple, a common exploratory approach to SAR is to
retrieve those compounds which have a particular
structural fragment from a large data base of
compounds. Then it is of interest to seck subscts
of compounds with structural similarities, that is,
clusters, Other examples come from toxicology,
where it is of interest to examine sets of com-
pounds for structural similarities so that these
similarities can be related to toxicity. A third
example involves the examination of a ber:of

provided by a molecular mechanics routine to see
if they fall in natural subgroupings.

The exploration of multivariate data via cluster-
ing involves many steps: data collection, initial
screening of the variables, exploration of cluster-
ing tendency, application of clustering strategies,
and validation and interpretation of the results,
Often the entire process is iterative. Once a data
set has been selected for analysis, the examination
of clustering tendency prior to the development of
clusters is important because it allows the experi-
menter to be sure that the clustering exercise has a
chance of finding real clusters. Most algorithms
desizaed to find clusters will find some regardless
o the structure of the data. This work focusses on

possible conformations for complex structures as

0169-7439/91/803.50  © 1991 = Elsevier Science Publishers BV,

the evaluation of clustering tendency via Hopkins
statistic and a recently proposed variation of it.
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Hopkins statistic has been shown previously to be
a very good method for assessing clustenng ten-
dency [1}.

Hopkins statistic [2,3} is intended to assess
whether or not a given data set differs from a set
of uniform random numbers. The statistic is
calculated with the following equation.

" >y Uj: random to real
YU+Y W,  Warealtoreal

Each U, value iz the distance from a randomly
sclected position within the sampling window to
the nearest data point, and each W, value is the
distance from a randomly selected data point to
its nearest neighbor data point. The sums are over
the number of sampling points, which 1s usually
selected to be 5% to 10% of the number of points
in the data set. The U, positions (the sampling
points) are chosen from a uniform distribution
within the sampling window. H has values ncar
1/2 for unclustered data, that is, data with a
uniform distribution. H has values greater than
1/2 for clustered data, and 1.0 is the upper hmit
for extremely clustered data. For reasonable as-
sumptions, H has a beta distribution, so the prob-
ability for rejection of the null hypothesis (no
clustering) can be quantitatively stated. For exam-
ple, for 15 sampling points and a value } = 0.65,
the probability of rejection of the null hypothesis
is 0.90.

The ordinary Hopkins statistic has several
shortcomings. One s its sensitivity to the size of
the sampling window and hence to outliers.
Another is that the criterion of comparison to a
uniform distribution is weak since almost uny
measured or calculated data will be more clustered
than the uniform distribution.

We have investigated [4] a modified form of the
Hopkins statistic, H’, designed to overcome thase
shortcomings. Instead of choosing the sampling
points from a uniform distnbution, we choose
them from the actuaizunivariate distributions of
the data under investigiion. This allows us to
investigate whethér the clustering tendency . ob-
served for the data set is-due to the muluvariate
nature of the observations or due only to the
univariate distributions of the variables.

Tests of this modified Hopkins statistic with
two-dimensional and' ten-dimensional artificial
data sets designed to be extremely clustered, and
with an eight-dimensional chemical data set, show
the modified staustic to be more conservative i
its estimation of clustering than the original
Hepkins statistic. The modified statistic also 1s not
sensitive to outliers.

The chemical example used for testing the mod-
ified Hopkins statistic consists of 143 acrylate
compounds with the general structure shown. This
set of data was analyzed i the context of a
structure—toxicity relationship mvestigation [5].
Each of the 143 acrylates was represented by a set
of eight calculated structural descriptors which
were chosen to best represent the structures. A
principal components plot of the data shows no
apparent clustering. However, the data do show
substantial clustering tendency with the original
Hopkins Statistic: H = 0.82. When the ongmal
Hopkins statistic was calculated for scrambled
data, H 0,77, This shows that there 1s substan-
tial clustening tendency due to the unvanate dis-
tnbution: of the eight structural descriptors. The
value for the modificd Hopkins statistic was H' =
0.65. This shows that the multivanate data contain
more information than merely, their umvariate dis-
tributions. This data set was analyzed for cluster-
ing using the well-hnown K-means and Isodata
clustering method, and five stable clusters were
found. These five clusters made good sense whea
the structures of the compounds in each class were
considered by knowledgeable chemists and
toxicologists.

0

He R
N o

The modified Hopkins statistic can also be
used for featurc selection, that s, for selection of
these variables which support clustering n a data
set: Preliminary studies have shown that the use of
partial 'sums of U, and W] can be used effectivly
for deletion of the lcast uscful variables thereby
focussing on those variables that best support
clustering,
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Cluster analysts shares with other scaling meth-
ods (such as principal components, factor analy-
s1s) the 1deal that there is an underlying structure
which influences observed variables, but which is
not entirely revealed by these variables, This un-
deilying structure, as compared to the observed
variables themselves, may also be more highly
predictive of other phenomena. For example,
structural similarities of sets of compounds may
reflect underlying chemical structures that are re-
lated to the biological toxicity of these com-
pounds. Thus, clustering is seen as a valid alterna-
tive to regresston analysis as a way of predicting
these other phenomena (e.g., toxicity). Once clus-
ters have been identified, analysis of variance can
be used to demonstrate the predictive ability of
the clusters. A similar approach has been used in
educational research to find predictors of im-
provement in mathematics achievement of junior
high school students [1).

Although the modified Hopkins statistic dis-
cussed by Jurs and Lawson {2] can be useful in
determining whether multivariaie data reflect un-
derlying clusters, it has some disadvantages. One
disadvantage is that this statistic depends heavily
on the scales of the variables measured. Simply
changing the scale of measurement on any single
variable measured will change the value of H.
More generally, the value of # 1s affected by the
standard deviations of the variables being constd-
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ered. (This disadvantage of H is shared by prin-
cipal component analysss, where scale changes can
influence prinapal values and principal vectors
complex ways.) Lawson and Jurs [3] are aware of
this problem, and standardize their vanables be-
fore clustering. However, 1f sample standard devi-
ations are used for standardization, rather than
the actual populatton standard deviations, the dis-
tribution of the Hopkins staustics 1s no longer
necessarily a beta distribution (even if reasonably
large samples are used to estimate standard devia-
tions).

A second possible disadvantage of the modifted
Hopkins statistic 1s that it concentrates on cluster-
tng as a multivariate phenomenon (ie., due to
dependence of the vanables). This excludes from
consideration clusters that can form in the mult-
variate space because the indiwvidual vanables
themselves show clustering (multimodality) in their
marginal distributions, while yet being indepen-
dent. Since the ideal in scaling is a latent structure
which relates the observed values, and this latent
structure is of pamary nterest, this may not be a
senous defect. However, it does raise the concep-
tual question of what constitutes a cluster.

It is to Jurs and Lawson’s credit that they have
climinated the major disadvantage of the ongmat
Hopkins statistic-namely, the msistence on as-
suming that unclustered variables were indepen-
dent and uniformly distnibuted. Few vanables en-
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countered in nature have uniform distributions.
Although it 1s possible to transform marginal dis-
tributions so that they are uniform (by the prob-
ability integral transformation performed variable
by variable), such transformations destroy com-
parability of distances to nearest neighbors It is
these distances between data points that most
intuitively convey the notion of ‘clustering’. (If all
that is meant by clustering were lack of mdepen-
dence, then tests of independence based on either
the Kolmogorov-Smirnov distance between multi-
variate distributions or Pearson chi-squared tests
of independence based on grouped data in con-
tingency tables could be used. The distances
utilized by these tests have little resemblance to
Euclidean distances between data points.)

Besides use of the Hopkins statistic, there are
other ways that the ‘reality’ of observed clusters
can be demonstrated. Using more than one dis-
tinct method for searching for clusters (e.g., K-
means and Isodata, as used by Jurs and Lawson
[2) in their chemical data) is one good method. If
different search methods arrive at similar (num-
bers of) clusters, one can be less worried that the
clusters are artifacts of a particular search method.
Additionally, one can hold back a randomly
selected subset of variables in an inutial clustering
scarch, and then see if adding these variables
hanges the ¢ fons. (This approach assumes
that no small subset of variables by itself defines
the true underlying clusters.) Instead of withhold-
ing variables, one can randomly divide data points
(cross-validation) into two or more groups and se¢
if similar clusters arise in such data sets. This
approach is associated with a formal statistical

theory that is currently discussed under the
terminology ‘bootstrap analysis’ [4 5}. There 1s
also a resemblance between the subsampling of
data used in the Hopkins test and the resampling
methods used in bootstrap analysis. Finally, as
demonstrated by Jurs and Lawson, one can see if
the clusters found make sense in the light of
existing chemical (and biological, in the case of
toxicity) knowledge. If the clusters successfully
predict other phenomena (eg. toxicity), this is
further evidence that such clusters are not artifacts
of the data.

As Jurs and Lawson so clearly show, cluster
analysis has the potential to yield important in-
sight and direction in the study of classes of
chemical compounds.
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The use of calibration models to predict analyte concentrations in samples showing sesponses from poorly calibrated components,
|

or samples showing dnft sn the instrumental response function, is seldom ful. These p lib models cannot
account for not d 1n the step. Simple modif) are possible which remedy this difficulty for
wlassical least squares (CLS) regr By using seq i regr for the pred step, are possible which lessen
errors due to g and permut pred: of well-modelled p in the p of delled p

Impl of the seq 1 regs 15 tly done through use of the Katman filter. Use of filter models for dynamies
and also pernuts of dnft of vanous types. The use of CLS calibration with Kalman filter prediction 15
presented and tested wath simulated sp pic data, Comp are made to other calibration and pred: hod:
INTRODUCTION surements made on predictors. Care in collecting

Care in the calibration step is very important
for a successful multicomponent analysis. During
the imtial phasc of a calibration, when standard
mixtures of analytes are measured, effort must be
made to calibrate over the widest possible range of
instrumental conditions, analyte concentrations,
and potential interferences. From these calibration
data, a calibration model 15 g i which ex-
plains as mush as possible of the vanations seen
during the calibration step. The model is used to
predict analyte concentrations from further mea-

calibration data and generating a calibration model
is repaid in the range over which the calibration
remains valid during prediction,

Even with great care in calibration, there ts sull
the likelihood of instrumental drift with time, and
the chance that small changes in the nature of tae
sample may appear in the form of unexpecied
(and uncalibrated) components. Dnft and unmod-
elled responses present two sigmificant challenges
to calibration schemes. Both can be regarded as
ummodelled components i the calibration, but
the effects of these unmodelled components are

0169-7439/91/803.50  ©1991 = Elsevier Science Publishers B.V.
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seen dunng prediction. The development of
calibration methods that are more robust to the
effects of mstrumental dnft and unmodelled com-
ponents would greatly extend the useful range of
many calibration schemes.

Considerable research has been directed at
methods for improving the modelling of the
calibratton step. Methods based on regression of
data onto factor models or on the relation of
latent varables have been developed to improve
the calibration process by lessening the effects of
noise n the calibration model (1,2) These meth-
ods have shown success in generating very reliable
models for the cahibration step, but they are less
successful at predicting concentrations for mult-
component samples, especially those that are ob-
served under conditions far removed from the
conditions of cziibration. Other methods, for ex-
ample those based on rank annihilation, might be
more suited to treatment of chemical measure-
ment of samples containing well-modelled compo-
nents coexisting with unknown contaminants (3).
Because these methods presume identical spectral
or temporal behavior for any well-modelled com-
ponents, so that second-order or higher data can
be rank annihilated, they are more suited to arrays
to bilinear spectra than to time.varying calibration
systems, which may contain time jitter from run to
run [4]. That jitter' makes registration of the bilin-
ear arrays uncertain, and it causcs difficulties in
the rank reduction process. Drift in the instrumen-
tal response is also problematic to rank reduction
methods because of the lack of reproducibility of
the time varying responses of standards and sam-
ples.

The prediction step can be considered a time-
series process, and it seems reasonable to apply
methods intended for time scries analysis in at-
tempting to.create calibration models which are
more robust to errors in the prediction step. Since
the time-series involved are multivariate, given the
multicom;onent chemical models and the multi-
component responses observed, a multivanate ap-
proach is appropriate.

One multivariate, ume-based approach that
might be examined is the Kalman filter. Although
many of its time-serics properties have not been
used to full advantage in applications in analytical

chemustry, this algorithm has been extensively used
for analysis of multicomponent data [5). Previous
work from this laboratory {6,7) has demonstrated
that modified Kalman filter methods may be ad-
vantageous for multicomponent analysis in the
presence of unanticipated and unmodelled re-
sponses tn a multicomponent signal. Some work
»on drift compensation of univanate systems [8]
“has also appeared.

This paper demonstrates that one form of
cahbration, classical least squares (CLS) calibra-
tion, is directly compatible with ordinary Kalman
filtertng, either 1 vector or in scalar (sequential
regression) form. Additions to the CLS calibration
model which account for random dnift and for
unmodelled responses are presented and dis-
cussed, All mcthods arc tested with simulated
spectroscopic data.

THEORY
Classical least squares calibration

For analysis of a set of compounds contamned

in a mixture, any of the standard methods of
multicomponent calibration c¢an be used, CLS
calibration, sometimes called K-matrix calibra<
tion, 15 convement for use here because of ats
assumption of the least-squares causal model re-
lating the measured response A, of standards to
their known concentrations C,
A, =CK+e (1)
where the n X p matnx K relates the m spectra
collected over p sensor channels to the mXn
concentrations 1 C,. From the calibration step.
where both A, and C, are hnown, matnx K is
easily obtained from

K= (C7C,)"'cTA, @

The columns of tne ‘K-matnx’, K, are estimates of
the pure-component spectra of species mvolved in
the calibration. Once the calibration 1s completed,
the matrix K can also be used to estimate the
concentrations of analytes C, mn unknown sam-
ples, since

Com AKT(KKT) ™! 6)
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The accuracy of the estimates C, obtained from
the prediction step depends on the adequacy of
the cahbration model K, and the presence of
additional, unexpected components altermg the
multicomponent response A,. These can be ad-
ditive, as might be the case when additional con-
stituents are present, and these constituents re-
sponses contnibute to the multicomponent signal.
They also mught be multplicative, as would be the
case when linear or proportional dnft caused a
hange in the instr I response expected for a
given concentration of analytes.

While calibration based on classical least-
squares 15 well-understood, since it 1s one form of
ordinary multiple linear regression, it may not
always be the best method for calibration. Some
of the undesirable features of a cahbration based
on CLS regression include possible overfitting of
data to the calibration models, where parts of the
unknown response are fitted to noise in the
calibration models {1]).

Sequential regression for prediction

One way to alter CLS calibration is to perform
the regression of unknown response:onto models
sequentially, rather than in a single step. Sequen-
tial regression of data onto the classical causal
model of equation 1 is well-established {9-11).
The algorithm is given by three equations, one for
the update of the regression parameters (here, the
unknown concentrations), one for the update of
the covariance of the estimates, and one for the
coirection of the current estimates C, and P to
account for the information contained in new
data, If the regression parameters are contained in
the n X 1 vector C, with covariance P, the recur-
sion relations, expressed for the "-th channel of a
p-channel spectrum, are

G (k) = G (k= 1) + L(K)[A (k)

= CI(k)K(X)] 0)
- P(k - 1)K(K)
UK = e+ ork -k O
P(k) = P(k~1)
Plk = DK(K)P(k - 1)

" Ve T KPR DKGE) O

In these equations, a(k) 1s the weight given to
observation A ,(k), and L(k) 1s the correction
factor used to update C,(k) and P(k). Careful
choice of appropnate values for a(k) will reduce
the problem of overfitting mentioned above. The
calibration matrix K(k) can be calculated directly
from eq. (2) above, or it also can be obtamed by
application of seq i reg) n of the spectra
obtamed during cahbration runs onto the stan-
dard concentrations, using a regression approach
analogous to that in eqs. (4)~(6).

Sequential regression requires initral guesses
C,(0) and the covariance matrix P(0), a measure
of the uncertainty of the imtial guess C,(0). The
covaniance matnx has umts of concentration
squared, and 1ts diagonal elements are-the van-
ance assoclated with each element of the con-
centration vector C,.

With correct regression models, the sequential
estimates C (k) quickly become independent of
the initial guess C,(0), provided that a ‘reason-
able’ value is selected for P(8). Values of about
1-100 times C,(0) work well for the diagonal
values of P(0); the off-diagonal clements may be
set to zero. Larger values of P(0) typically ard in
gettng rapid convergence. When P{0) 1s selected
too small, biased results for C, will result from the
sequential regression {9).

While sequential regression may not always be
as computationally efficient as ordmnary regres-
sion, 1t sometimes can be more computationally
efficient, depending on the number of parameters
to be fitted, the di ion of the ement,
and the weighting factors, Cases where sequential
regression has a computational advantage over
ordinary regresston anse where the few parameters
are to be fitted to a high-dimension measurement,
and where weighting data are available for use in
the fitting: this situation is common in the analy-
sis of multicomponent data in analytical chem-
istry. Scquential regression also offers other ad-
vantages. Two of these advantages are the elimina-
tion of the nced for matrix inversion, and the
possibility of using prior information on the val-
ues and/or distribution of C, and P. A third
advantage is the ease with which the regression
problem can be recast into forms suited to analy-
sis by regression methods based on loss functions
other than simple least squares.

[ %
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Within a Bayesian framework, for example, C,
can be considered a random parameter vector with
some pror distnbution, and the set of observa-
tions should be correlated with C,. The postentor
probability density function for C, is.desired at
some point k, that is p(C,]A,). The estimate Ce
can be obtained from the distnbution; a common
approach is to use the value for which-the distn-
bution attains a maximum — the maximum a
posterion (MAP) estimate, For a symmetric distri-
bution, the MAP estimate coincides with the mean
of the distnbution, and it is also the value-that
:pinimizesAlhe parameter error variance E{(C, -~
C,)(C,~ C,)"}. The problem ts to determne the
evolution of the density function (or its mean)
with added data. In general, solution of this prob-
lem 15 not possible, but 1f measurement notse e 1s
taken as Gaussian, an exact solution 1s possible.
Under these constramts, 1t 1s found that optimal
weighting of obscrvations is given by the relation

1/a(k) ~E{(e(k) = #(k))7 (e(k) = &(k))]
o)

Given this defimition of the weighting, the sequen-
tial regresston can also be cast into a form amen.
able to use with the scalar form of the Kalman
filter, with system dynamics model

X(k + 1) = F(k)X(k) + w(k) 8)
and a measurement model
2(k) m HT(k)X(k) + v (k) )

where, for simple K-matrix prediction, the filter
state X is the vector C,, the filter measurement
matrix H is the calibration matrix K, the filter
measurement z is the spectral datum A, and the
filter noise parameter v descnbes the calibration
measurement error e. If the filter dynamics matri-
is set to identity for this time-dependent problem,
and the filter systems notse w 1s taken as zero, ¢gs.
(4)~(6) may be scen to be identical with the up-
date equations from the scalar Kalman algonthm
(eqs. (A3)-(A5) n the Appendix), where the vec-
tor quantity L(k) is the Kalman gain, The filter
time projection egs. (A1) for the state, and (A2)
for the state covariance, are identities i this:ex-
ample, because the filter model for systems dy-

nancs (eq. (8)) 1s an 1dentity in this analysis, and
because Q(k) = E{w(k)w'(k)]=0 and R(k)=
E{v(k)v"(k)) = 1/a when the system noise 1s zero
and the measurement noise is defined by eq. (7)
above. Use of Kalman filter methods therefore
offers a general, flexible framework for classical
least squares cabibration and prediction, since
classical least squares can be taken as a subset of
the more general filtering approach, with identity
systems dynamics and uniform weighting.

Modelling drift in CLS prediction

The systems dynamics matrix F(k) of the Kal-
man filter need not be 1dentity, however A model
for dnift can be used to describe filter state dy-
namucs, thus extending the CLS calioration model
to track dnfting multicomponent systems. Ran-
dom and hnear dnft models are believed to de-
scnbe many chemical systems [8). A dnfting
parameter X is generally described by a lincar
equation

X(r) m X(t=1) +d(¢) (10)

where d(¢) 1s the dnft. Random dnft occurs when
d(t) 1s a random parameter, while linear drift
results when d(¢) vanes systematically with time.
If the state is defined as X(¢) = [C, (1), d(¢)}, this
systems model leads to a simple systems dynamics
model, namely

] [ 1]fat-n],
[“(1)]-[0 1] ,1(,_1)]+"(1) (1)

with the measurement matrix as the time-indepen.
dent quantity

H'[g] (12)

This dynamic model is obscrvable if matnx
(HFTH(FTYH...(FT)*" Y is of rank n for the
n-dimensional state vector X [11). In this instance,
this matnx s of full rank if X is of full rank, and
if duplicate measurements are made on each sam-
ple, so that drift variables in 4 can be char-
acterized.

Other forms of nstrumental dnft are just as
casily modelled. With proportional drift, the re-
sponse at some time ¢ might be related to the
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response at an earher time ¢ 1, by 2(¢) = 1/y(?)
«2(t=1) where y(1) is a time-dependent, random
parameter. This leads to a systems dynamics equa-
tion that is now a function of time, ¢

C(r+1) =y(1)C, () + (1) (13)

Now, the set of parameters C, and the random
parameter y must both be estimated to obtam C,
in the presence of random drift. Define the system
state as X(2)=[C,(¢), v(t = 1)). Then the filter
models are

G [_jv¢e-d] G ]
[ﬂx—n “[ 0 Hyo-n]+[o““)
(14)

to account for drift over time between spectral
measurements, and

(1) =KC, +o (15)

to describe the calibration during the prediction of
this particular spectral i As di d
above, the prediction step may be solved directly,
with a matrix inversion, to obtain state estimates
C,, or it may be broken down to a series of scalar
relations defining the sequential regression of 2
onto K

2(k) = K(k)C, +v(k) (16)

Such decomposition of the measurement vector £
into a sequence of scalar measurements z(k) is
common n the engineening literature {10,12}. For
the filter models described by eqgs. (13) and (16),
the index ¢ descnbes time between spectral mea-
surements, while index & describes scalar compo-
nents of the measurcment, The state X will be
both time- and wavelength-dependent, but since
only state estimates are the end of the update
process are of interest, and not the evolution of
states during the sequence of scalar updates, states
are given in terms of time for this model. State
projection occurs between measurcment of full
spectra, while state update occurs for each spectral
channel,

In this treatment, it is assumed that spectral
measurement is fast, and that drift during collec-
tion of a spectrum is negligible. If so, the systems

dynamics matnix can be expressed as the time-
and state-dependent quantity

f(x,t) - [7(')5\1(’) (1)] (17)

and the measurement matnx is defined as the
time-independent quantity defined mn eq. (12)
above. This filter model 1s nonlnear, since the
system dynamics depends upon the present value
of the filter state. The states of thus model may be
estimated by use of the extended Kalman filter
[5,9-11]}. In essence, the extended filter provides a
way to linearize the systems dynamics matrix f
about the current state estimates, so that

F<x>=a—f%ﬂl\-gu[*(’; n éul(”]

(18)

where éu(t) and §(¢=—1) are the current state
estimates in the extended Kalman filter, It 1s pos-
sible to perform sequential regresston over the
spectral data to obtain estimates of states C, for a
given spectrum and time, then proceed though the
extended Kalman filter to provide predictions of
drift between spectral measurements, as descnbed
above, If a good estimate of the system nose Q(¢)
is available, accurate estimation of the true con-
centrations and the apparent drift in concentra.
tion should be possible using these simple modifi-
cations to CLS prediction.

Examination of the equations for the Kalman
filter (eqs. (A1)-(A7)) demonstrates that the equa-
tions for updating state estimates are decoupled
from those used to project states ahead 1n time.
There is no reason why other regression-based
prediction methods which employ externally-sup-
plied witial guesses cannot be used in conjunction
with the projection equations used i the Kalman
filter. In this way, other calibration methods might
be extended to account for drift between samples,
or for other time-dependent effects,

Ce
tion

1p g for lelled resp n predic-

If the measurement model 15 m error, ordmary
regression of data onto the spectral models will

et mene N m e .
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produce 1naccurate esttmates of concentration,
With any recursive algonthm, there is also the
possibility of skipping the processing of data that
1s corrupted by the existence of poorly modelled
signals. This feature can be used to avoid regions
of data for which models are 1n error, provided
some means of evaluating the model quality can
be found.

Adapuwe filtering for of noise pr

Several indicators exsst for model quality. The
most rehable are based on the filter innovations, a
measure of how well the filter model can predict
new data. For scalar Kalman filtering, the filter
innovations are defined as

v(k) = 2(k) = HT(k)X (19)

where X(k |k ~1) 1s the projected state at pont
k, based on mformation up through point & — 1.
One possible way to evaluate innovation quality 1s
to compare the observed mnovations sequence
v(k) with that expected from the filter theory.
With a correct filter model, the filter innovations
are gven by H(k)P(k)H(k), assuming no corre-
lation of state and measurement nose, This quan-
tity accounts for the presence of error in z(k)
which is not part of the filter model H(k). With a
correct model, the error in z(k) is random, and its
variance is R = Efv(k)v7(k)). According to the-
ory, for a correct filter model, with Gaussian noise
on the measured data, the filter innovations will
also be Gaussian, In addition, the mnovations will
have a_mean value of 0 and a standard deviation
of y{R) . When the observed mnovations deviate
sigmficantly from theory, model error must be
present {11,13).

The actual error being evaluated in any com-
parison of Gbserved and theoretical inovations 1§
error in modelling R, and not H, however. In the
theory of the Kalman filter, it is assumed that, i
addition to being Gaussian noise processes, with
covariances R and Q, the noise sequences v(k)
and w(r) have zero means, Any error in modelling
the measurement matrix H will be indicated by a
nonzero mean for v(k), while errors in modelling
F will appear as a nonzero mean for w(1). An
adaptive filter tests the modelling of the filter

noise vanances. If the additional assumption 1s
made that R and Q are well-modelled, however,
any modelling error detected may then be as-
signed to non-zero noise means For an adaptive
filter based on matching of theoretical and experi-
mental innovations, the error 1s attributed to devr-
ations in the presumed mean of ». This model
error can be ‘covered up’ by aruificially increasing
the measurement variance R(k), which effectively
down-weights the parts of the spectral data that
are not well-modelled. Any regression done with
incomplete models, however, is suboptimal, and
the results obtamed from adaptive filtering ars not
always variance est Operation of
this filter requires averaging of a set of mnnova-
tions prior to comparison with theory, for better
statistical propertics {6]. The lag introduced by the
averaging process makes the filter slow to con-
verge to good estimates of states. Estimates ob-
tained from the covariance-matching adaptive
filter are very dependent on the imtial guesses
used to begwn filtenng, and simplex optimization
has been needed to locate the best filtering results,
as well as to automate this adaptive filter {7).
Because of these undesirable features, the covari-
ance-matching adaptive filter was not used here

Adaptwe filtering by innovations correlation match-
ing

Another check on model quality can be done
by investigation of the autocorrelation of the in-
novations. Matching observed innovations auto-
correlation over a part of the innovations se-
quence to that expected from filter theory permits
estimation of the noise variances required for the
filter model. For correlation matching, the auto-
correlation function o is calculated for the innova-
tions over some window of autocorrelation lags.
Then, the expenmental autocorrelation ¢ is re-
Jated to the théoretical autocorrelation & by the
cquation

sk 1) m Dk Da+y(k,d)

for datum k and lag /, where n(k,l) is a zero-
mean, white noise term, and « is the fitted param-
eter, taken here as independent of k. The noise

(20)
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vanances are expressed as hnear functions of a, so
that

N

R(K)= ¥ Rya, @1)
e}

and

Q(k) = 2 0, (22)

The parameter « is obtained from the observed
innovations autocorrelation by the sequential re-
gression

alk) = afk=1) +O(K)OT(KIW=I(k)
x[o(k) = @ (k)alk)} (23)

where the covariance parameter © is propagated
by

O(k) =0 (k=1) ~ O(k - 1)®T(k)[W(k)

+0(k)O(k=1)07(k)] "o (k)
x0(k-1) (24)

and where W 1s a weight matnx determmed by the
autocorrelation at lag 0 {14).

While the computationally simpler matching of
theoretical and experimental innovations can also
be used to estimate nowse variances, the results of
Monte Carlo studies show that noise estimates
from these adaptive filters tend to be biased [15).
Further, with matching of observed and theoreti-
cal innovations autocorrelation, it is possible to
estimate both nowse vanances (R and Q) at once,
and these estimates are not strongly affected by
measurement model ecror in the data [14]. Once
these quantities have been estimated, subsequent
estimation of noise means (deviattons of E(w) and
E(v) from zcro) can be performed. For this rea-
son, 1nnovations correlation was used to obtam
estimates of R and Q for filter studies throughout
this work.

Adaptive filtering by estimating innovations vari-
ance

A third approach to adaptive filteri.., makes
use of the available error information carried in

the filter mnovations and state covariance matrix
P. For a chemica! system with no systems dy-
namucs, the variance in the mnovations is expected
to be a function of the measured variables z, the
states X and the measurement model H according
to the relation

w() AN
o,z(,‘,=°f<k)[‘a—:'%] '*‘0121(1.)[2;{(([())]
2
+°§(A>[§_Vx((’;?))' @)

which yields upon substitution the relation

0,0y = [R(K) + X(k 1k~ 1)QX7(k [k ~ 1)

+H(k)P(k |k = )HT (k)] (26)

This equation reflects the fact that the innovation
uncertainty o, must remain large when states are
not well known, but must be decrease to the limit
of measurements noise when states are well known.
Since this relation is based on the knowledge of R,
it presumes accurate estimates of noise variances,
but is permits rapid rejection of ncorrectly mod-
elled data if knowledge of nose variances is avail-
able. Data may be filtered normally, or rejected,
based on comparison of the innovations »(k) and
the value of o,(k): innovations falling within £ 30,
may be considered ‘within those expected for a
correct model’, but those innovations falling out-
side of this range are clear indicators of error in
the model,

In this connection, it should be noted that the
standardized innovations n(k)

n(k) =y(k)o, (k)™ (27)

may also be defined. The squared, standardized
tnnovations observed for filtering p measurements
with an n-dimenstonal state model distribute as
chi-square, with p—n degrees of freedom [10].
With this-relation, a simple test can be used to
evaluate model quality, A threshold can be set, so
that innovation values falling within the threshold
are filtered normally, while those falling outside
the threshold are ignored in the filtering, and
affect neither the filter states or covaninces. For
cxample, innovations well below the threshold

e e ———
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Numbers 1-4 refer to the response function c.realed for the three

310, have a farly hugh probability of occurring
by chance, while those with values greater than
3{o,| are not hkely. In practice, though, an asym-
metric threshold on muovations is desirable. Large
positive innovattons imply model error (for chem-
ical’ responses with positive peaks), while Jarge
negative nnovations might be expected as state
estimates are refined. However, several consecu-
tive, large, negative innovations may indicate that
state estimates may be affected by the model
error. In this situation, it is necessary to alter the
covariance matrix -P(k [k = 1), both to increase
the uncertainty in state estimates and to increase
0, Measurements following this change are
processed as before. For work reported here, the
absolute threshold was set to 3{g,}, and two con-
secutive measurements preducing innovations be-
fow 3}o,| cauged reset of the diagonal elements of
the covariance matrix for all state components
contributing more than 5% of the predicted mea~
surement. This selective reset was done to avoid
altering state estimates that were not likely to have
been influenced by the model error. Calculation of
the innovations threshold is fast, and the filtening
is set to that most of the data processed are
weltemodelled. For these reasons, rapid convers
gence of filter estimates is usually observed, even
though the filter is not strictly optimal, because

1h ’

P
p and the delled comp

the filter model is incomplete. External optimiza-
tion methods and extensive 1teration are not
needed when this adaptive filter is used to correct
filter models. When consccutive negative innova-
tions are encountered, however, at least one more
tteratica should be performed to insure satisfacs
tory estimates of states and covariances.

IMPLEMENTATION

Programs for CLS calibration, partial least-
squares calibration, principal components calibra-
tion, and Kalman filtenng were all developed in
the MATLAB programming environment. Kal-
man filtering programs included the linear drift
filter, the proportional dnft filter based on an
extended Kalman filter, the second-order adaptive
filter based on covariance matching, and the in-
novations variance-based adaptive filter for detec-
tion of model errors. In all Kalman fiters, 1he
Kalman algorithm (egs. (A1)-(AS5)) was used. The
MATLAB environment was run on an Apple
Maclntosh SE equipped with 68020 processor, 8
Mbytes of memory, hard disk and a 68882 numernc
coprocessor. No effort was made to optimize any
of these programs for execution speed.

Data for evaluation of these filter calibration
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mxethods were peoeraiad osing simebitad visthie
spextra. Vabdanoa and tramess sets were made by

was sech that the peak SN ravo was 20. 1. Data
sets e drift were g d by cakulzuny

rndocly geoening sets of p coa-
coatrabos, ten by mxltipinag the troe spxtaa
by the conaentratioas, 22d fizaliv by addicg notse.
Noese 233ed 1o spestra was drawn frocn Gazssiza
of aiform distribatioas: tpiclly, the nole kevd

jons wsing the drift modds defined by
ecx. (10) and (13). The dsift-cosrupted concentra-
toas were meltiphied by the ree spectra. and
noise was 23dad to prodoce sets of noisy, drift-
cosrepted specra
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Fig. 2. Estimated spectra (rom CLS and sequential regression, A. Columns of the K mztnx, from CLS regresuon as apphed to 20
racmber trumng set, with random, Gaussian nose added to obtamn 2 maxcum S/ N of 180, B, Columns of the A matnx, from

188

sequential regression of the same 20 member cahbration set as above,
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Fig. 3.1 from adapuve filtenag of pletety modelled dax AL b from fikenng of 25-member s2hidauon sc1
with a maumum S0 of £0, 2ad snmodeiled warposent as given 1 Fiz. 1. A scquenial segression calibrauca 3as ased (o generats
e adapuve filter model, 22d estmated values for R (25x10 "y and Q (1.0 X 10 ) were usad 1n the filicnag B. Inpovauoas
from filieniog of 25-member vabidation sct with maumum S,.N of 2000, and unmodelled comporsnt as givea 1 Fiz. 1. Filicnng was

done as 1a (A). but with estimated valves for R (1.1 10°%) and Q (1.0 X 1077%) used for filicnag.

TABLE1
Estimation of comp jons in absence of model error and daft
Method Predsction Calibration R Q PRESS *
set /N (max) model
KF 39 SR.** 26x10~* 00 0.0907
CLS 39 CLS *** 0 1] 0.804
KF 39 CLs 26x107? “ox10-? 0.822
CLs 39 SR 0 0 0.00
KF 13 SR. 1.06x1072 00 0524
CLS 18 CLs 0 0 1.246
KF 18 cLs 1.06% 1072 10x10"* 1244
CLS 18 SR 0 0 0524
* PRESS. The sum of squared error for the predicted sp as pared to the true, noise-free spectrum, summed over all
hb p for the 20 bers of the pred set The same prediction set was used, wath different amounts of added
noise, in each case, and cach method was applied 10 each set, so that direct comparison is possible.
** S R.. model from seqq 1 regr of absorbance onto standard using d <tror v;

of 26X 1073,
*** CLS: model from classical least squares

of calib data, without weight

- mr—
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RESULTS AND DISCUSSION

:\selofc:li!‘ i 2ndands was prepared by

bctndimxnsbcdsubsunu:l!\b\meoflbc
jon and the =g of the

The ¢ specira were s shown
mFigl. Afxaah’tw:uonbadbcm:mompm
predictzon was attempted oa sumulated validaton
sets, for which the truc values of component con-
ceniratioas, nevse vanance, and drift wese known.

Egusra’erce of Kalmen filier and CLS prediction

To & the 1 equivalence of
CLS predicuon and sequential regression. the two
hods were compared for a well-behaved set of
data. Fig. 2 shows plots of the columas of matrix
K obtained from sequential regression of calibra-
tion spectra onto the standard concentrations, and
as estimated from CLS calibration applied to the
same traumng set data. The noise estimate used in
the sequential regression was 1.0 X 103, close to
the true noisc vanance contained in the cabbra-
tion data. Imp n the on ob d
through use of the sequential regression 1s ap-
parent. Overfitting of the cahbration data has

cot of K e d from sequential regression
with the true spectna is excellent.

Table 1 shows resulis from & ume-independent.
scalar Kalman filier and CLS prediction applicd
10 a typical sets of vabdauoa data. with noisc
taken from a uniform distribution. Ia this study.
the spectral modeds were generated two ways: one
set was generated by CLS calibraticn: these con-
1ainzd noise, as demonstrated in Fig. 2. The other
sct was g d by scquential reg of
calibration data; these models were vinually
noisc-free. Both models were used for Kalman
filtesing and for CLS prediction. The results from
the time-independent Kalman filter were identical
to those obtained from CLS prediction when the
CLS calibration model was used. However, if the
aalibration model noise was treated as a form of
system dynamics ncise, and a suitable value was
uezd for Q (sce eq. (A7) in the Appendix) in the
Kalman filter, imp. lted. In fact,
these estimates tracked estimates obtained from
filtering with noisc-frec calibration models.

TABLE2
Estimation of comp joas in p of delled resp
Mcthod Predction Cahibration R Q PRESS *
set S/N (max) model
CLs 39 CLS - - 364
CLs 134 CLs - - 386
Cis 1944 SR. - - 267
AKF** 39 SR. 26x107? 10x107% 1.00
AKF 1934 SR. 26x107} 10X 101 0.13
AKF 39 CLS 26x107? 10x10~?* 2.21
AKF 194 CLS 99%1077 10x10"* 037
PLS *** 39 PLS* - - 320
PLS 1944 PLS - - 217
PCR* 3 PCR - - 325
PCR 1944 PCR - - 226
* Modified to reflect delled p p PRESS was calculated for the of pred of all modelled
components.
b AKI;'. I t based adaptive filtenng, using innovations limt of 36,(4 ), and reset for covariance upon restast of
3X10%4

ey

PLS: Parnal least squares prediction, us'ng the algonthm given 1n Geladi and Kowalsha [2).

* PLS. Partal least- -squares calibration, with the model defined by cross-vahidation A five-factor model was used in these fits

% pCR: Principal p gression, using the al

given in Geladt and Kowalski [2)

% pCR., Pancipal components calibration, with the model defined by the first three eigenvectors of the calibration data scatter

matrix,
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Calibration mode] noise is “cxplzined” by ing

were coasiderably better than all but those pro-

u:nsafonnofdmmxmmxbesaqmm!

and inc 2 Q 10 a realistc valee
pmtms the overfitting ol' the noisy riodd 10
data. In genenal, Kalman filtering of the predict-
ion scts produced results thet were superio: 10
those obtzined from CLS prediction, unla- CLS
prediction was carried out with noise-free calibra-
tion models.

Estimation in the presence of unmodelled compo-
nents

duced by adapuve filtering. The results can be
explained by noung that PLS and PCR methods
rely on a factor model for the multicomponent
system. This factor model 1s produced during the
calibration, and it is set up to remove most of the
noisc present in the calibration. The three PCR
factors (or five PLS factors) fit validauoa data
with or without noise equally well: the dominant
error is model error from the uncalibrated compo-
nent In this case. the model error is relatively
small. and good estimates result=d from fzctor-
based calibration. Residuals from fitting of the

When an extra, non-calibrated component is
2ddsd to the set of species producing the set of
calibration responses, the prediction error in-
creases. Fig. 2 shows the response of four compo-
nents, the calibration model included concentra-
tions and responses on the Jast three, since compo-
nent 4 was absent from the calibration. As indi-
cated in Table 2, the presence of this unantic-

1h 1 a1,

ipated and unc P a sig-

lidation data showed overfitting of components
near the uncalibrated component. just as in the
CLS fitting. however.

Sensiticaty of innocanons vanance adapuwe filter 1o
nouse estimates

As would be expected from its derivation, the
ptire filter based on innovations variance is

K

mifizant decrease in the accurac\ of estimation of
the well-modelled ats. C 1and

somewhat sensttive to values used for system and
noise. To obtain the results sum-

P P
2. whose responses show sigmificant overlap with
the delled resp of comp 1. carry
the largest error in estimation. Component 3, with
a response that is somewhat separated from the
unmodelled component, sull carries some error in
estumation. Further, the error in estimation 1s pre-
sent despite the calibration method employed.
Even methods based on regression of data onto
factor-based calibrauon models are unable to
compensate for the unmodelled component 1n the
predicion step. The innovations vanance-based
adapuve filter, on the other hand, successfully
compensates for most of the effects of the unmod-
clled component, and shows sigmficantly less er-
ror in the estimated concentrations of components
1 and 2, and shghtly Iess crror, on average, in the
estimation of component 3.

The results observed for partial least squares
{PLS) and principal components regression {PCR)
calibration were stukingly different than those
observed for fitung by other means. PRESS values
obtained from fiting the cahibratton model to the
validation data set were almost independent of the
noise contained in the vahdation data, and they

marized 1n the table above, values of 1 x 10 and
2.6 107 were used for Q and R. respectively.
These values, obtained from the innovauons corre-
lation adaptive filter as discussed above, very
slightly overestimated the actual noise contribu-
tions, which were 0 and 2.5 X 10~ for system and
measurement noise vanances. For state values near
unity, the third term 1n eq. (26) will dominate at
the start, when the state covanances are large, but
the first term will quichly become the dominant
term as state covanance decreases. With state
values near unnty, the second term will, n general,
always be small unless system noise is sizable, this
term probably could be neglected to decrease
computational overhead, if desired After u e first
20 pomnts, and on subsequent filter passes with
better state estimates and decreased covanances,

of notse vartance will
domunate the calculation of filter innovations van-
ance, and will therefore sct the region where
acceptable innovations will be found Sigmficant
over- or underestimation of the measurement noise
variance may be ewpected to significantly affect
the performance of the adaptive filter. To test the




TABLE3
Scadgvity of & : % e Glier 10 nose Vask
Method Sraficsion Cabbaazion R Q PRESS *
3¢t S/N (=) =odd
AKF 1823 SR 10x10°* 10x10°% 603
AKF 1933 °° SR. 25x10°? 10x10™" 104
AKF 1923 °° SR $0%x10°? 10x10°% 173
AKF 1855 °° SR 10x107? 10x10°* 151
AKF 1938 °° SR 25%x107? 10x10°? 106
AKF 1938 °° SR s0x10°? 10x10°° 134
AKF 1523 *° SR 10x10™2 10x10°* 05
AKF 1532 *° SR 25x10™> 10x10°% 119
AKF 1923 °* SR s0x107 10x10* 187
AKF 1953 *°° SR 25%x10° 10x10-* 1.06
AKF 1943 °** SR. 50x10> 10x10°* 135
AKF 1943 °°° SR 10x 107 10%10~* 151

* Modified PRESS. Sce Table 2 for detauls, True notse vanances for data were R=26x107% and Q=10x10"?
** Noisc was generaied from vmform distnbutioa for this data set.

Norwsc was generated from normal distribunon for this data set.

sensitivity of the filtering to errors in the estima-
uon of the measurement and system notse van-
ances. two data sets were prepared for examina-
tion, one with noise taken from a umform distn-
bution. and one with noise taken from a normal
distnbution. Filtening was done on these data,
using the same filter model, and the same mmtial
guesses. Only the guesses for the system and mea-
surement noise was changed from run to run.

TABLE4

Esumation of noise vanance i data

Table 3 presents the results of that study. Fig. 3
shows the innovations after adaptation of the filter
model for two noise levels. The unmodelled fourth
component is visible, even when noise in the mea-
surement approaches the size of the unmodelled
component (case A) When noise levels are small
(case B), good correction of the models for the
unmodelled component 1s observed from the flat
innovations over the data sct.

Model type * Imt R Est R It Q Est Q True R True Q

N 10%10°% a1x1074 0 11xi07 1 40x10°* 0

N 10x1072 41x107¢ 0 13x10°% 40% 1074 0

N 10x107* 41x1074 0 13x107% 40x107* 0

N 10x10°2 43%x107* 0 11x10°% 40x107¢ 0

D 31x107? 41x107* 0 11x10°% 40x107* 0

D 10x107¢ a1x107¢ 10x10™12 44%10"% 40%10°° 40x107*
N 10%10°¢ 41x107¢ 10x107¢ s1x107% 40%10°° 40%107°
D 10Xx10°¢ 431x10°¢ 10 34x10°* 40x107° 40x10"*
A 10x107¢ 44x107¢ 10x10°% 44x107% 40x107¢ 40%107%

* N Complete model, with innal state guess of 0 and covanance guess of I No dnft was present D Incomplete model with
random dnft between measured spectra Imuial guesses of state and covanance were ds tn case N above A Incomplete model, with
random drifi and unmodelled components present The imttal state guess was within 10 x of true state value, and covanance guess of

1
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Estiration of noise veriance parameters

To test the accuracy of estimation of noise
ranancss Dy the innovations correlation adzptive
filter, this filter was applied 1o several spectra with
different noise structures. As above, noise from
uniform and normal distributions was used, and
the adaptive filter - > applied to the data. For
this study. a comp ¢ spectral model was used,
and no adaptation <. noise means was necessary.
Initial guesses for the noise variances were typi-
«cally near zero, and guesses for the covariance of

A A
i
q‘;\\“ "\
\\x ﬁq\u "“%‘\’”
\n} \%\\ ‘

Response

CLS Regression

(W 41 A\
1) “ u‘l‘;}‘g ‘ “‘/’”w ‘\72""‘ %’
( {\ 'b%‘ Wy %'! l.';;\{? NS

the noise estimates were taken as 1. Table 4 sum-
marizes the results from this study. In general,
better estimation of noise vanance was secen when
initizl guesses of noise vardance wer+ lower than
the true valugs. These overly optissntic guesses
comverged quickly to accusate noise estimates.
Waen noise estimates were iricd that overesti-
mated the noise contributions, convergence was
slower, and the firal esumates were not s accu-
rate. For this system, esti of the

ment vanance R were found 10 be more accurate
than thoss for the systems roise Q. but both

é{ fg'.

8.8 Conp. 1

. 8.6k

g Conp. 2

0

v o8.4r

v

]

B ogol Comp, 3 p

Offset

] S 18 15

Saapie nunber

20 25




A Origisal Research Paper 101

Xalman filtering

c 1
Conp. 1
gk T 4
. 8.6
g Comp. 2
]
9 f.4p -
-
]
2 g2k Comp. 3 _
18
Offset
-8.2
[} S 19 15 28 25

Sanple nunber

Fig 4 A Smunted data showing fincar onft 1n response and offset for Dnft3 data set B Esumated concentrations for data
showng hnear daft from CLS regression with offset term. C. Estimated concentrations for data showiag lineds doft from Kalman
filter mth dnft model

TABLE S

Estimation of c¢ wporent from mul p data corrupted by hinear dnft

Method Daiasst * Predict.on Cahbration Relt ertor (%) PRESS
set §/N (max) model Comp 1 Comp 2 Comp 3

Cts  Daf 39 cLs *+ 136 028 161 28 /7

KF Dnfil 29 SR *** 185 028 -162 2865

CLs Dnful 39 Sp 006 280 -033 2983

KF Daft2 39 QR 167 -00s -214 009

CLS Dnfi2 39 SR ** in -009 ~212 025

KF Daft3 39 SR v 086 075 -407 057

Cis Dnid 39 SR ** 167 ~-006 ~194 060

KF Dafi3 ¥ 39 SR *** 0% 057 ~063 018

* Data sets had hneas dnft 1 all parameters, including the instrumental iesponse functions for each component and in the offses
term Drftl notse var inees were 19X 10 * for daft n all al 1esponse p. and 10 % 107% 1n the offset term
Drfte nowse vapances were 10X 10 * i all instrumental response parameters and offset terms, mn which the exception of the
responss. funton tof vomponeny 1, which had 4 dnift vanance of 10 < 10 7 Drift3 had novse vanances for all instrumental response
vanables of 10 x 1077, and dnft in the offset tesm with vanance 10X 10 * All data sets had added measurement noise, with a
vanance of 25 X 107°

** Regression medel augmented to mnclude an offset term

*** Filtus mode! augmented 1o include an offset term and dnft patamete.s in iesponses and ffset Duplicate measurements made at
cach pant,

$ Four rephcates were used in the measurement seep for this sun
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estimated values were close enough to the true
noise variances to be useful in filtering data.
PRESS vaiues were generally Jower for data with
normally-distributed neise than for data with uni-
form noise, as might be expected from the deriva-
tion of the adaptive filter.

Correction of drift in multicomponent prediction
Correction for linear drift was brieliy studied
for multicomponent prediction. For the three

component chemical system used in these studics,
the state vector used for filtering was X =[C, C,

A

Response

G, bdy dy dy dy). where b is the offset term in the
filter measurement modei, and d, describes drift
in state 1. Definition of the state in this way meant
that eight parameters were fitted tc the multicom-
ponent data. Duplicate data were used 10 fit to
ensure filter observability, as discussed above.
Data with linear drift in response and offset were
generated to test this filter. A typical data set is
shown in Fig. 4A.

Results from this study are summarized in Ta-
ble 5. Filtering results are not significantly better
than those obtained from CLS regression with an
offset term in the calibration model, but filtening

B
CLS Regression
1.2
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| /M
—
N Conp. 2
¢ a.8p A
c
o /_/\/\/\/,\//
s 8.6}
ﬂ Conp. 3
8.4} e
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Fig 5 A S d data showing prop § dnft 1n resp 4nd offset for Dniftd data set B Estimated concentrations for data

showing proportional daft from CLS regression with offset term € Estimated concentrations for data showing proportional dnft
from extended Kalman filter wath dnft mode!

typically produced lower PRESS values than CLS it 1s clear from the figure that, when properly

regression, Fig. 4B and C clanfy the advantage modelled, inear dnft can be effectively removed
ganed by the use of the much more complex filter from multicomponent systems Part of the failure
model over the simpler CLS model. sigmficantly to achieve better drift correction with the filter lies
reduced fluctuations n the esumation of con- i the weak observabihty of the filter drift model
centrations from a dnft-corrupted prediction set. With single measurements made on a drifung sys-
TABLE 6
E of comp t from mul p data pted by prop 1 daft
Method Dataset * Preducti “alib Rel. etror (%) PRESS

set S/N (max) model Comp 1 Comp, 2 Comp 3
EKF** Dnf@ 39 SR 315 -107 -380 009
CLS Daft4 39 SR. 148 133 1057 1835
CLS Dnftd 39 SR ¢ 145 131 978 1839
EKF Dnft4 39 SR.% 380 -034 -310 009
EKF Dnfts 39 SR ¥ 139 031 051 020
CLS Dnft$ 39 SR.* 379 2716 319 1.16
EKF Dnft$ 39 SR 112 003 02 019
* Data sets had prog | duft in the resp p for all comp along with random dnft in the offset Dnftd had

proportionat dnft of 0 9905, and random dnft vanance of 10 x 10 * Dnits had proportional duft of 1 0016, and random dnft of
1.0 X 107%, Both sets had measurements nouse with vanance 2.5 X 10~?
** Extended Kalman filter, wth filter models as defined by eqs. {14) and (15). Fulter state included somponent coneentrations and
proportional daft parameter.
*** Using correct concentrations as the intial guess, wath gucssed proportional dnft of 1
M Using augmented regression modvs, with offset term,

Using zera as initial guess of comp and guessed prop 1dnftof 1,

PO
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tem, the filter drift model is not observatle, and
estimates of component concentrations fluctuate

wildly Use of dupli i that
the filter model is observable. It is only weakly
obscrvable, h , and the d compo-

nent concentrations are not as stable as in other
filtering applications reported here. Collecting
even more rephcates improves filter results, since
this has the effect of making the filter model more
observable. The size of the drift also has an effect
on the precision of the concentration estimates. As
drift magnitude increases, @ also must increase,
and as indicated 1n eq (AS5), the covariance in the
final filter states must also increase Thus, even
though linear drft can be corrected and ats effects
removed with sufficient replicates, the precision of
the predictions 1s degraded.

The correction of proportional dnft by use of
an extended Kalman filter was also investigated.
The same spectral models and cahbration was
used as m the other studies reported above, and
proportional dnft was ntroduced mto the set of
spectral data to be used for prediction. A typical
data set 1s shown in Fig. SA. The extended Kal-
man filter was applied to data with proportional
dnft, using the filter model described in eqs. (15)
and (17) above. Linearization of the system dy-
namics was done as in eq. (18). As before, esti-
mates of nowse vaniance were obtaned from the
mnovations correlaton adaptive filter. Table 6
shows results of ftung data with proportional
dnft.

Corgection of proportional dnft 1s better than
correction of linear dnft, but unlike the results
obtamed from the Imear dnft study, the mtial
guess for the states used in filtering is important i
convergence of drift cstimates. Even with poor
mitral guesses, though, very good compensation of
dnft occurs as is apparent from the error in the
estimated results and the PRESS values, As with
hnear dnift, correction of proportronal dnft results
in degraded precision in the estimated component
concentrations.,

CONCLUSIONS

This work has demonstrated the ease with which
a CLS calibration may be accomplished by Kal-

man filtering. This approach to CLS calibration
and prediction provides for improved calibration
models and improved prediction accuracy n noisy
data. Another bencfit 1s the ability to reject un-
modelled component responses m the prediction
of analyte concentrations 1n unknown mxtures.
The correction of dnft in the response of the
chemical system during the prediction step 1s also
possible, provided that a suitable medel for the
dnft process can be generated. All these correc-
tions represent relatively simple additions to the
calibration model The classical least squares
calibration model is especially convement because
the Kalman filter has been denved for use with a
causal measurement model Given the general def-
mmton of the filter state, and the possibihty of
extending sequential regresston to the inverse
model, however, there 1s no difficulty i extending
the time-senies concepts of Kalman filtening to
other calibration models, at least on an ad hoc
basis

All filtering routines presented here are rela-
uvely fast, These could be realized in a suitable
real-ume language, if desired, for on-line use.
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APPENDIX

Scalar Kalman algoruhm

Propagation of filter states 1 time

X(k) =F(k)X(k-1) (A1)

Propagation of state covanance in time

P(k|k-1) = F(K)P(k - 1{k -~ 1)FT(k)
+Q(k) (A2)

Kalman gain
K(k) = P(k| k = DH(K)[HT(K)P(k 1k = 1)
xH(k)+R(K)] " (a3)
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State update

X(k|k) = X(k|k = 1) + K(k)|2(k) = HT(k)
XX(kjk-1)] (A%)

Covarlance update

P(k|k) = P(kk—1) - K(k)HT(k)P(k |k - 1)

(A5)

Initral guesses

X(010) =X,P(0|0) =P, (A6)

Noise assumptions

E[o(k) (k)] = R(K)

E[w(k)w"(K)] = Q(k)

E[w(k)o'(;)] =0 forall ;. k (A7)
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Abstract

Bates DM and Watts DG, 1991 Model building in chemstey using profile ¢ and trace plots Chemometrns and Intelligen:
Laboratory Systems, 10 107-116

The aim of model building s to d.termne the correwt model, which means that the equation desenibing the phenvmenon under
study includes all the important factoi ~, in the correct form, and excludes ummportant factors Practically, of coutse, we can only use
the data at hand to it a model which 15 "adequate’ In hinear and nonbinear regresston, 4 model which is inadequate because an
rmportant factor 1> not included, v because o facton 1s incorporated in 4 wrong form, wan often be detected by examining plots of the
ressduals And an linear regression, models which include too many factors or too many parameters an often be detected by
examimng the parameter correlation matnx, or the parameter estimates and then standard exross For noulineat models, however,
such linear approximation summanes die not relable To asd in the development of nonlinear models, we 1ecommend using prof ke
iikelthood plots The plots are simple to generate and appear to be espectally useful in detecung models which could be simphified by
removing factors of by equating parameters In thas paper we ase data sets from chemxal engineening to dllustiate the value of profite
¢ and profile trace plots 1n model building

INTRODUCTION where Y, 1s a random vanable corresponding to

the observation for the nth case, and Z, 15 a

Linear regression random vanable corresponding to the ‘noise’ -

fecting that case. The noise for cach case 1s as-

Constder a set of data consisting of values of a sumed to be normally distnbuted with mean 0 and

set of factors, X, n=1, 20 s N, p= 1,200, P, vanance o, and independent from case to case

and the corresponding values of a response, . The model for all N cases can be written in matnx
which are well described by a model of the form  form as

Y, 2 B Xy b ByXpy ¥ wnu t BpXppt Z, (1) Y=XB+7Z ¥3]

0169-7439/91,/503.50  © 1991 = Elsevier Saaence Publishers BV
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where Y is the N X 1 vector of random varizbles

P ing the resp X is the N P denivas
tive matax, B is the PX 1 vector of voknown
parameter values, and Z is the vector of

TABLE1
Second 03t PEE TS St FTRTess Tk O 8 BT

variables representing the noise. The quantity X8
is called the expected value of Y and the moddl is
termed lincar because the derivative of the ex-
pected value with respect to any parameter does
not depend on any of the parameters [1}

For a lincar model of the form (2) with nor-
mally distributed noise, classical statistical analy-
sis (sce. for example ref. 2) blishes that the
“best” estimate of B. given data y., can be formally
wrilten as

B=(x7%) '\ (3)
where B=(8,. Br.... Bp). is the least squares
estimate. Furthermore the associated estimator can
be shown to have the propertics that it is normally
distnbuted with expected vaiue B and vanance-
covanance matnx (X7X) o>, The pth parameter
thus has esumated standard error

"’(I}r):"\"((xrx)_‘]” 4

where s2 = S(B)/(N ~ P) 1s the variance estimate
given by the mintmum sum of squares dnided by
s “degrees of freedom’, N~ P. A 1-~a confi-
dence mtenal for that parameter 1s given by

—t(N-P, a/2) <8(B,) <t(N-P; a/2) (5)

where

8,-8,

) = = 6

(8)=%8) )
15 the studentized parameter and (N — P; a/2)1s
the value which 1solates an area a/2 under the
right tail of the Student’s ¢ distribution with N — P
degrees of freedom. A (1 —a) joint parameter
wnference region for the parameters is given by

(B-B) XTX(B-B) < Ps*F(P, N=P; a)
)]

where F(P, N - P, a) s the value which 1solates
an area a under the nght tail of Fisher’s F distn-
bution with P and N — P degrees of freedom

N robati i) ey

=218 ~ el
om o0
G2% LY 33
o35 €119
0 158
o053 &2
183 "8R3

Mickael edditioa

Gross and Hoz {3] obtained data on the relative
reaction rate of the addition of ON ™ 1o a series of
11-diany]-2-nitrocthylenes  for which the linear
model

L=B,~Bx.~Z, s

is appropriate. In . (S) ¥, relates to the natural
logarithm of the relative rate constant, Itk &,.).
and x to the substituent constant. o,. The data are
listed in Table 1. The row 0.0 comresponds to
hydrogen.

For these data. the least squares estimates are
$=(-0051. 413y with parameter standzrd er-
rors 0.036, (.19 respectively. The variance estimate
is 5° = 000474 with fise degrees of freedom. and
we have
0.51800
0.25252

027302 ~-0.99254
-0.99253  7.56837

Joint confidence regrons are <llipses. as shown in
Fig. 1.

Ty - 7400000
XX = 5 91500

xx =

Nonlinear regression

Now constder a model of 1i:e form
Y,=/(0.x,)+2, )

where / is a nonli exp ion function, x,, 15

a vector of regressor vanables for the nth case,
and 8=(0,,.-.,8,)" is a Px1 vector of un-
known parameters. (We use 0 to emphasize the
difference from linear medels. As before, the dis-

“ s orern

» m—em emmeaa
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tarbances Z, are assumed 1o be nomal (0. 0°)
and independent. A model f(6. x,)1s noalinear if
at least one denvauve of the expectauon function
with respect to at least one of the parameters
mvolves at least onc of the paramsters (1)) For
example, the Michachs-Menten model for enzyme
kinetics. f=8,x/(8. + x) 15 deemed nonlincar be-
cause the desivative 3f/36, = x /(8. + x) involves
8,.

Unlike the lincar model, eqn. (1), there are no
analvuic results for the estimates and ther distn-
butions. Indeed. there 1s not even an exphat solu-
tion for the least squares estimates: to find the
least squares estimales, we must resort to search
ot iterative techmques. Properties of the estimates
are usually assumod to be well represented by
linear app Juated at the Jeast
squares cstimates 8, for example, the lincar ap-
proximation \.mancc—co.-amncc matnx is tahsn
10 be (V7V) 52, where s2 = S(8)/(N — P) is the
vanance estimate, V=094/30" 1s the denvative
matsix evaluated at §, and 7(6) = (£(8, x,)...

The Bomxr appeodmativa stasdznd eroe for
the parsaxctss 8, B by analogy with o 43)
setdj=s, vy, ()
and a Bamr apoconizmstica (1 — a) mrrgnd) coa-
fideace tnterval ik by analozy wth o 3

~iN- Pra <G )N~ P, a2} (11}

where the stodatized 3 i defined by
analozy with eg. (61
a,-8
sig,) =2~ (R
5(3,)

Finally. a licew approumatia (1 —a) joiat
parameter inference regon for the parameters is
taken to be

(6-8)V'V(8-8) < PSF(P. X = P1a) (13)
Unfi civ. lincar approvi inf e
regions are not tnstwosthy {1}

Profile 1 plots

Because the sampling theory approach is not
adeguate for nonlincar regression, it is nocessary
10 us¢ a more general approach based on the
likelihood function. Fortunately, for noisc which
is independently normally distributed with con-
stant variance, the likelihood funciion depends
primarily on the sum of squares fuiction

S(8)={ »—=(8))7{ y - n(8)) (14)

and so drawing inferences about the parameters
reduces to summanzng the sum of squares func-
tion clficiently and meaningfully.

For lincar models of the form of ¢q. (2). the
sum of squares function is quadratic in B and so
contours of likelihood, which correspond
10 « of relaune plausibility of
parameter values, are concentric ellipsoids. For
example, the elliptical confidence regions in Fg. 1
are also sum of s cont To ize
the likelthood funcuon for a hncar model then, we
only necd to specify the (common} certer of the

f(8, x,)7 1s the vector of function values evai

1l (3) and their size aud onentation. This

at the design points.

can be done mathematically for any number of

|
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paramzicrs, and i2dly reduces 10 the
sumanry eg. (7). bot visuslizing the joint region in
moce than three dimensions &s very difficais

For nonlincar models. the sum of
surface is not quadratic, and 5o the problem be-
comes one of interpreting or visualizing a com-
picated surface in muliéple dimensions. To do
this. we focus 0 the charseteristics of the sum of
squzres fenction when viewed in one or two di-
mensions.

A vseful view in one dimension is given by its
*shadow” in that dimension: the profile sum of
squams{uncdcn.Fcramoddonbcfonn(.’)or
(9). the profile sum of squares furction for the pth
oarameter can be written

$18,) = mins(6,. 67,)7) = s((6,..07,)")

r
{15)
where the trace vector
0,=16..f 1. G.\....G) (16)
is the least sq i of 8_, conditi 2l on
the profile parameter 4,. The nowtion (8. 67,)

denotes the vector with clements
(6., y. 6,.6,.,.....G,)

For a linear model, the profile sum of squarss
function 1s a parabola, and can be written in ferms
of the studentized parameter as

5(8,)=s(B) +s%8(8,)’ an

By rearranging this equation, we can wnie

3(8,) = sgn{B, - £,)3(B) - 5(B) /s
=1(8,) (18)

where #(B,) is the profile ¢ funcuon. That 15, for a
linear model, the profile ¢ function 1s dentically
equal to the studentized p T f

For a nonlinear model, the profile ¢ funcuon 1s
defined as

7(6,) =sign(6, - 6,){3(8) - 5G) /s

and is. in general, not equal to the studentized
prrameter function. The prefile ¢ function is simi-
l:rtolbcssu'_isﬁcu:cdbyBliss:mdhm(-ﬂ.

The profile 7 function is valuable beca: plots
of the profile ¢ function versus the stedentized
profile parameter provide useful information on
the nonlineasity of an estimation situation. This is
because, for a linear model, a plot of =(B,) versus
the stedentized profile pa 8(5,) is a
straight line through the origin with unit slope.
Depastures of the profile 1 plot of +(8,) versus
8(0,) from the 45 degree line reveal nonlincarity
in the parameter. and determining where 7(4,)
intersects the horizontal kine at height +o(N -
P, a/2) determines an accurate nominal (1-a)
likelihood interval for g,.

Profile traces

Additional important information can be cb-
tained from pairwise plots of the components of
the trace vector versus the profile parameter. That
is, we overlay plots of 0;(8’) sersus 8, and ﬂ.,(ﬂ,,)
versus 6. .

For a lincar model. 3 plot of the trace BAB,)
versus B, will be a straight line through the ungin
with slope given by the corrclation betaeen the
parameters (derived from the appropriste clement
of the matrix (XTX)™"). Furthermore, the traces
will mntersect the pz T joint confidence cl-
lipses at points of honzontal or vertical tangency
of the cllipscs. (See Fig. 1 or a plot of the profile
traces for the CN~ Michael addinor data.)

For a nonlinear modeci, the traces w Il be cunved,
but will still mtersect the paramete: joint likeh-
hood regions at points of vertical and horizontal
tangency. This information, together with infor-
mation from the profile ¢ plots, can be used to
obtain accurate shetches of the Joint regions, as
descnbed in ref. 1, Appeadix 6. The traces and
sketches reveal useful information about the inter-
dependence of the parameter estimates caused by
the form of the model for the expsctation function
and by the experimental design used in the investi-
gauon. Such information can provide valuable in-
sights for inference, for model building, and for
desiga, as demonstrated n the next section.

e
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CODIMER HYDROGENATION

Tschemnitz et al. [5] obtained and analyzed data
cn the vapor phase hydrogenation of mixed isooc-
tenes over a solid supported nickel catalyst in a
study to d the most plausible mechani
for a reaction. The data consisted of the average
reaction temperature T (Kelvin), the average par-
tial pressures of hydrogen (x;). of codimer (x,).
and of hydrogenated codimer (x,). (atmospheres),
and the reaction rate (Ib/{h) (Ib catalysy).

Eigh mec were postulated for the
reaction. and the most plausible one 1s found to be <
that i which the ion between molecularly

where R =1.986 is the gas law constant, « is the
effective entropy change, and B is the negative
effective enthalpy change under the assumption
that the catalyst activity remains unaltered with
change in temperature.

The linear summary statistics for model d, using
the data at all temperatures and the Arthenius
form for the velocity and equilibrium constants,
are shown in Table 2. To improve the behavior of
the estimates. we scaled and centered the data
using xo = 1000(1/7 ~ 1/548), and. to avoid con-
fusion, define ¢, = a; + B,/548 and v,= B,/1000.
Inspection of the p i and their

adsorbed kydrogen and adsorbed codimer 1s con-
trolled b, the surface reaction. so the reaction rate
is

,0.8,x,x,

(1 +8,x, + 0,x, + 8,x, )

(19)

r

(ref. 5, model d). The parameters 8,, 6. and 6,
represent adsorption equilibnium constants and 8,
1s the product of the adsorption velocity constant
of hydrogen and codimer molecules xsL, where
sL represents the ‘activity” of the catalyst. The
parameter 8, also has the interpretation of the
proportion of the surface area of the catalyst
which 1s covered by the reactants,

It 15 assumed that each of the constants can be
expressed as a function of temperature by means
of an Arrhemius relation,

8, =exp(a,/R + B,/RT)

TABLE 2

Parameter summary for codimer hydrogenation data, modsl d

d errors in Table 2 suggests that ¢, and v,
could be zero, that ¢, and ¢, could be equal. and
that v, and 1, could be equal. Howerver, we must
be careful about incorporating model reductions
which involve the ¢s since they depend on the
arbitrary centering temperature T, and the associ-
ated v.

To demonstrate the kinds of informanon which
1s available from profiling. we present selected
profile trace plots in Fig. 2 and discuss vanous
aspects of the plots. Superimposed on the trace
plots are sketches (dashed and solid closed curves)
of the joint likelthood regions. The honzontal and
vertical tangents of contours which are incom-
pletely determined are shown by short bars on the
traces. Also shown is the straight line (solid or
dashed) corresponding to equal values of the
parameters with the X ndicating the pomt at
which both parameters equal zero

From Fig. 2a 1t can be seen that ¢, could be
zero, since the point corresponding 10 &, =0 hes

Param- Est se Correlation
eter
- ¢2 L) 1 ki) V2 R:]
& =016 035
¢ -278 037 -095
- -108 031 -088 081
A -297 087 -019 030 048
I -266 1.79 -041 035 038 o010
7 6.38 183 0.19 -014 -599 006 -091
7] 541 122 014 002 -009 015 -072 073
Ya 1775 248 -003 -003 -018 -083 0.11 -010 -002
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well within the vertical “shadow” of the joint Iikeli- Similarly, from Fig. 2¢. y; = 0 is emmently plausi-
hood region and has a studentized value near zero. ble, as is v, = ¢;. The latter is meaningless, how-
However, ¢, =0 is not plausible, nor is ¢, =¢,. ever, since the two parameters are of different

2 4 6 0
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2 4 6 8
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Fig 2 Selected profile traces for codimer hydrogenation, model d (1) ¢, vs ¢y, (b) 63 vs. $2:4) 7vs 03, {d) 13 VS Y2 (€} vy VS 9,
D) 74 vs 94 The solid and dashed closed curves denote the 60, 80, 90, 95, and 99% joint ikehhood boundaries The solid or dashed
straight hnz is the line of equality of two parameters, and the X indicates the pornt corresponding to 8,0 6,=0.0 Short vertial and
honrzontal bars on the traces show the boundanes of contours which are not completely determined
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types. Companng Fig. 2b and d, it can be scen
that ¢;=¢, is not plausible, but that v, =y, is
highly plausible,

The high parameter correlations between the
par. S fest th as long ridges in
the 8-dimensional inference region, as Mustrated
in Figs 2a and f, where only the 60% contour is
complete. High par correlations often indi-
cate overparametnzation, but it appears that over-
parametnzation can also manifest as large jomnt
likelihood regions, especially unclosed ones, as
shown m Fig. 2e, where there 1s neghgible correla-
ton, but the jomnt region 1s very large. This mdi-
cates @ subspace in which the sum of squares
surface 1s very flat, which could be due to over-
parametrization

Because the ¢s depend on the arbitrary center-
ing tempetature T, we first considered model
reductions involving only the ys We refitted the
model, first holding y, at zero, and still found that
¢1 = 0 was plausible, as was v, = v, Settng HBEY
and vy, = G gave the results shown in Table 3.

The restdual sum of squares went from 2 2456
% 107* with 32 degrees of freedom to 2 3543 X
107* with 34 degrees of freedom, so there 1s not a
statistically sigmificant extra sum of squares At
this point we noted that two response values gave
e to large studentized residuals and so these
rows were deleted and the model refitted. The
main effect of this was to reduce the residual sum
of squares by about 30% and to reduce the param-
eter standard errors by about 15%.

Because v, =0, 1t 1s legiimate to follow through
and set ¢, = 0 as well The results from thrs model,
using the edited data, are shown 1 Table 4 The

TABLE 3

Parameter summary for codimer hydrogenation data, model J
mthyy=Cand =y,

Param- Esti-  se  Correlation

eter mate ¢, oz ¢’ Py Y
& ~027 032

4 ~271 036 -096

& -09 029 ~08 082

Y -289 085 -019 030 031

% 377 062 ~036 043 057 042

a 1778 240 000 -007 -022 -085 008

‘TABLE 4

Parameter summary for eduted coduner hydrogenation data,
model d with ¢, =0, v, = 0, and =Yy

Pa- Esti- se 9% Correlation
ram- mate Likehhood & % T
eter

fower upper

¢ 303009 -328 -277

¢y —113013 —-148 -070 -012

$ —314079 6% —124 038 067

vz 363049 225 512 028 0S54 038

Ya 1751 232 1196 2839 -020 -045 —087 007

profile trace plots (selected examples of which are
shown m Fig 3) sull show considerable nonlmear-
1ty in the model-data set-parametnization combi-
nation. Parameters ¢; and v, are the worst af-
fected, both mndividually and Jomtly, as shown by
the strongly curved profile 1 plots The asymptotic
behavior m the profile ¢ plots causes the jomnt
Iikelthood regrons to be open at levels above 90%
Although the lme ¢, = ¢, passes through the center
of the jomt hikelihood region, Fig 3a, 1t makes no
sense to equate these parameters because they
depend on the centening temperature and the Y
parameters We conclude, therefore, that the sim-
plest form of model d has been obtamed

It 15 useful to note that of the ten trace parr
plots only three (¢, vs ¢y, v, vs by, and v, vs ¢,)
gave closed contours at the 95 and 99% levels
Since the model has been pared to a senstble
minimum number of parameters, this suggest that
impiovement 1n the behavior of the hkehhood
surfece could only be achieved by mcorporating
more data. From the remaming seven trace plots,
and from the profile ¢ plots, fig 3¢ and f, 1t 15
clear that the open contours are duc to lack of
mformation: on ¢, and v,. (In Fig 3e the profile ¢
approaches an asymptote as ¢, reduces, and n
Fig 3f, the profile 7 approaches an asymptote as
¥s increases. In Figs 3a, b and ¢, the contours are
open because of ¢y, and 1 Figs 3b and d, because
of v,. The parameters ¢, ¢,, and v, are all well
behaved in these plots and m the other trace par
plots.) A future design should therefore be con-
structed 5o as to provide more mformation on &
and v, beth mdividually and jomntly, possibly using

P




114 Ch and Intelligent Lab y Systems W

© © (—— r g
© ] ol / |
< E <ty E

3 =

= Se
o S ot
7 T
4 @©
. 8 1
© ®
© 1 o}

« ] <}
~ ~

5 s

$e Sof

Ty 1 e
<l / el
h - | i
ol — elof N

-6 =20 2 46 8 -6 20 2 4 6 8
© 6(¢q) @ 8(y)
@ . 0 ymeer——mr e
©
< _ ; 1 <
~n s R
‘ x

&Q e LU SD

LN . oo
) e 1 v
N L < -

1 ]
|
[ — ] [-L SR e
-6 =20 2 4 6 8 -6 =202 4 6 8

@ () ® 8v)
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subset designs as proposed by Box [6) and Hill
and Hunter [7}.

DISCUSSION

The profile plot approach to summarizing the
inferential results of a statistical analysis has much
10 rec d it. The computations for the profile
¢ and profile trace plots are very efficient because
we start from excellent estimates based on the
previous calculation, and because the problem is
of reduced dimension (P ~ 1) Also, at each value
of the profile parameter we simultaneously gener-
ate the profile ¢ value and the converged values of
the trace vector, which provides the data to make
the profile pair plots. And for all the calculations,
only munor modifications to standard software are
necessary.

Profile plots provide important detailed infor-
matton about the esttmation situation, In addition
to providing accurate marginal hkelthood regions
for each parameter, the profile ¢ plots reveal how
nonhinear each parameter 1s Simularly, the profile
trace plots and the associated Ikelthood contour
sketches provide useful information on the pair-
wise behavior of the paramcters. Supenimposing
the line of equality on the trace plots is a stmple
but extremely effective aid to model bulding.
Pethaps more importantly, however, the plots col-
lective provide insights mto the experimental
situation, so that steps can be taken to obtan
more informatve data [8].

Ratkowsky [9] has suggested rewniting rational
model functions, such as in the codimer model, by
factoning the numerator parameters into the de-
nommnator term. For evample model d would be-
come

r= X1 X2
(By+ Byxy + Byxy o+ BAX:)z

where B, = 1/0,0.0;, B, = 8,/8,0;, and so on.
Profile plots for the 85 are much better behaved
than those for the 8s, producing almost perfectly
straight profile ¢ plots and traces. One conse-
quence of this gs that marginal and joint lincar

approximation regions and summartes for the 8
parameters, are extremely accurate.

This illustrates a situation where lincar ap-
proximation inferences for one set of parameters
for a nonhnear regresston model are much more
accurate than for another set of parameters. How-
ever, the case with which profile ¢ and profile
trace plots can be produced renders reparametrt-
zation considerably less important, since accurate
marginal and joint likelthood regtons can be ob-
tained directly for the ongmal parameters, which
are usually more meanmngful to the researcher.

For umwvarate reparametrization, say ¢, =
8(8,), the profile ¢ plot and assocrated profile
traces for ¢, can be obtamed directly from the
profile ¢ plot and associated profile traces for g,
there 15 no need to reparametnize the model func-
tion or do any reestimation. This, of course, 15 a
consequence of mvartance of the likehhood func-
tion

Profiling provides extremely valuable mforma-
tion for experimental design, as demonstrated m
the codimer hydrogenatton example. There 1t was
clearly evident from the profile ¢ and trace plots
that further data was required to provide better
informatron about ¢, and y,. No such indication
was evident from the hinear summary statistics.

Fanally, profiling can be applied to very general
situations, including multiresponse estimation, as
we have shown, and both umwvariate and mult-
variate tume senes analysis The umvanate situa-
tion has been discussed by Lam and Watts {10).
One can also use profihing to determne likelthood
mtervals for fitted values of the medel function,
by reparametnzing the model so that a new
parameter, say ¢,, is ¢qual to the fitted value at a
speaified design pont
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Abstract

ben-Avraham, D, 1991 Duffusion in disordered media Ch

and f Laboratory Systems, 10 117-122

Diffusion in disosdered media 1s anomalous in that st dos avt follow the regulat Frehian law of diffuston in homogeneous systems
This has impottant implivdations for the physics of tansport phenumena in disordered media Fraclals and sealing theory have been
particularly dllumunating in this area of research An elementary exposition of anomalous diffuston in disordered media and its
physical consequences, based on the concept of fractals, are presented

INTRODUCTION

Diffuston 1s among the most common phenom-
ena in nature. One would find 1t relatvely casy to
provide with scveral examples of systems where
diffuston plays a decisive role, in most areas of
suientific research. In homogeneous, ordered media
diffusion obeys Fick’s law,

(R}t m

i.c., the mean square displacement of a diffusing
particle increases proportionally to the time. This
basie result is umversal in that it applies whether
diffusion takes place in onc, two, or any dimen-
sion of regular Euclidean space [1). We have be-
come so much accustomed with this universahty
that the realization that Fick's law 1s violated for
diffusion in disordered media came as a big

surprise. In nonhomogenecous, disordered systems
the diffusion law becomes anomatous [2,3},
(R®)y ot 13/« ()

0169:7439/91/503.50 € 1991 = Elsevier Scrence Publishers BV

with d,, > 2 This slowing down of the transport 1s
caused by the delay of the diffusing particles in
the danglirg ends, botilencchs and backbends ex-
isting in the disordered structure.

The concepts of fractals and fractal dimen-
sionality have helped us understand better than
ever befure the physies of disurdered systems such
as porous earth, powders, amorphous matenals,
and aggregates, In this brief overview, we explain
these concepts and how fractals are used to model
disordered systems, We theu show how diffusion
1s anomalous in disordered media and point at
some of the physical consequences of this re-
marhable wregulanty.

FRACTALS AND DISORDERED MEDIA

We begin with the defimtions of the most basic
properties of {ractals [4). Fractals are mathemati-
cal objects with a Hausdorff-Besicovitch dimen-
sion that 1s not an integer. They are most easily




118

Ch and Intel Lab

y Systems W

constructed 1n a recursive way. Thus, for example,
the Koch curve (Fig. 1) is constructed by starting
with a unit segment. The middle third section of
this segment 1s erased and replaced by two other
segments of equal length 1/3. Next, the same
procedure 1s repeated for each of the four result-
mg segments (of length 1/3). This process 1s
ierated aé nfinitum, The hmuting curve 1s of
mfimte length yet 1t 15 confined to a finite region
of the plane. The best way to charactenze it is by
using 1ts Hausdorff-Besicovitch or fractal dimen-
sion, d. In a Koch curve magnified by a factor of
three there fit exactly four of the original curves,
Therefore 1ts fractal dimension is given by 3% = 4,
or dy=In 4/In 3 = 1.262. The fractal dimenston 18
a generahzation of the integer dimensions that we
associate wath regular objects of classical Euchdean
geometry.,

An mmportant property of fractals which ren-
ders them particularly useful for the modelling of
disordered media 1s their self-similanty, This can
be seen by examuning the Koch curve or the Koch
snowflake, as 1t 1s frequently called. One can sce a
central object reminiscent of a snowman. To the
nght and to the left of this central snowman, there
are two other snowmen, cach being an exact re-
production only smaller by a factor of 1/3. Each
of the smaller snowmen has n turn two stll

smaller copies of themselves to their right and left,
etc.

In recent years, 1t has become clear that many
disordered systems are best characterized by a
symmetry of invarnance under dilatation {5). This
fundamental symmetry 1s essentially the same as
the self-similanty of fractals, only that disordered
systems occurring i nature exhibit ths self-sim-
lanity only in a statistical sense. For these objects a
fractal dimenston d, 1s stll easily defined by the
scaling of thewr mass M with their linear size L

M L% 3)

The Koch curve can serve as a model for a
linear polymer chamn, Likewise, the Sierpinski
sponge of Fig. 2 15 an obvious model for porous
med:a. It 1s constructed by subdivading a cube 1nto
3 X 3 X 3 =27 smaller cubes, and eliminating the
central small cube and its six nearest neighbors,
Each of the remaining 20 cubes 1s processed in the
same way and the whole procedure 1s 1terated
(ndefimtely. Notice that the volume of the sponge
is zero, while its surface area 1s anfimte, This
agrees antuitively with the fact that s fractal
dimension d,=In 20/In 3 = 2.727 hes in between
d=2and d=3 Fractals have been used to model
an immense variety of disordered systems. Nature

|

Fig. 1. Koch curve. (a) the iterative process by which it s constructed, (b) selfesimubanty — the central snowman 15 surroundered by

w0 exact copies of wsell.
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Fig 2 The Sierpinsha sponge

abounds with examples of self-similar objects. This
has been made clear by several excellent books
published m recent years which helped populanze
fractals,

ANOMALOUS DIFFUSION

It 1s convenient to refer to a simple random
walk as a model for diffusion (1) In a sumple
discrete random walk the walker advances one
step m a umt ume. Each step 18 taken with cqual
probabilities to any of the nearest neighbors of the
present site. Denote the steps of such a walker by
uy. #..... i, Then, the mean square displacement
at ume 1, (R¥(1)). 1s given by

] : '
(R = (( E‘":) )"‘*22 (uprwyy  (4)

">

For regular latuces the correlations (u, - u,) are all
zcro, Thus, 1n homogencous systems one has the
usual resu't for normal diffusion that (R* (1)) =1.
Disordered systems are charactenzed by irregular
lattices. The nearest neighbors of a site are not

distnbuted symmetnically and the correlattons {u,
-u;) are not zero. This may lead to anomalous
diffusion.

Interestingly, a random walk tself 15 a statisti-
cally self-ssmlar object. To sec thus, consider the
random walk as it looks when one regards n
consecutive steps as one single *superstep’, Each
of the supersteps 1s a random jump r on the
lattice. The random supersteps are distributed
according to some probability P,(r) with a finite
moment {r3) = n. In the lumt 13> 1, P,(r) tends
to a Gaussian distribution. This 1s a simple result
of the central limt theorem. It 1s ewident that
statstically the same random walk results for duf-
ferent values of n, The only difference between
walks with n=n, and nw=n, is that in the first
case a step is performed cvery n, time units and
cvery n, time units in the latter. Also, the average
length of a step 1s n}’? and nY? respectively, for
the different walks, This means that if we scale
ume as £ = A¢ and length as 7 - N/3r then two
walks with 11, = An, are exactly equivalent under
this scaling. Hence, the simple random walk is
statstically self-similar. In fact it is a statistical
fractal. Upon dilation of space by a factor of N2
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Fig 3 A Sierpinshi gashet drawn 1o the sixth generation

the number of steps (or ‘mass’ of the watk) m-
creases by a factor of A. Thercfore the fractal
dimension of a random walk 1s d, =In A/In
NM=2 s mnteresting that random walks per-
formed on disordered, but statistically self-sinular
structures are still self-simlar themselves, exactly
as for regular lattices. The impertant difference 1s
that the usual diffusion exponent, d,, =2, 1s no
longer equal to 2. Daffusion 15 anoinalous.

We will now illustrate anomalous diffusion by
considering a random walk on the Sierpinshi gashet
of Fig. 3. The Sierpinshi gasket is perhaps the
most widely used fractal lattice for theoretical
applications. This is because of the fact that it is a
finitely ramified fractal, i.c., one needs cut only a
finite number of bonds 1o isolate a subset of the
gasket. This property facilitates the exact analysis
of various physical models, including the random
walk problem,

At cach step the walker chooses randomly to
move to one of the four ncarest neighbors on ik
gasket. As stated above, we expect the walk to be
statistically self-similar. The mean square dis-
placement would grow as (R?) & (*/«, where d,,
is the lous diffusion exp Note that d,
is in fact the fractal dimensionality of the path of

the random walker on the latuce In Fig. 4 we
show a plot of In (1) agamst In y(R*) as obtamed
from an exact enumeration of all possible walks
The slope of the resulting curve is d,, = 2.32 +

+ T +
In (R}
Fig. 4 Plot of In(r) as a funcuon of Iny/(R*(1)) on a

Sierpinsha gasket, using exact enumeration of the walks, The
slope is d,, = 2,323001
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(a) ®

Fig 5 Rescaling of furst passage ume for eatng the gasket
The walker enters the gasket at the top vertex and (a) takes a
tme T to eut through the lower O-vertices. (b) The rescaled
gasket, 7= T and A and B are et imes from the mternal
(decimated) vertices to the lower O-vertices

001. This shows clearly the anomaly of diffusion
on fractal lattices.

One can exploit the fimte ramification of the
Sierpinskr gasket to obtain an exact value of the
exponent d,, n the following way Consider the
mean first passage tme T to traverse a gasket umt
from one of 1ts vertices to either of the remaning
two vertices O (Fig Sa) One can then calculate
the corresponding mean first passage time T* for
exiting a rescaled gasket unit by a factor of 2 (Fig.
5h) This 1s done by making use of the Markov
property of the random walk. Thus, T’ equals the
tume T to exit the first gasket unit, plus A, the
mean first passage tume to leave the rescaled unit
from then on. Using the same reasoning for the
tumes A and B (the mean exit tmes starting from
the decimated internal vertices), one has

T'=T+A
A =4T+ A+ B+ T' (5)
4B =4T+ 24

The solution 1s 7/ = 5T (and A =4T, B=3T),
which is the rescaling of tme for a diffusion
process on the gasket upon the rescaling of length
by a factor of 2. Hence, d,, =1n 5/In 22322
Notice the agreement with the result obtained
from exact enumeration. This anomalous diffusion
1s characteristic of all fractal latuces, as well as of
statistically self-similar objects such as percolation
cluster and aggregates {6].

ANOMALOUS TRANSPORT PHYSICS

Diffusion 1s closely related to transport physics.
Anomalous diffusion results 1n anomalous trans-
port physics An excellent example is the relation
between diffusion and conductivity of a medwum.
In homogeneous systems 1t is given by the En-
stein relation

e*n

O

O4c kBTD (6)

where oy, 15 the d.c. conductivity, n is the carner
density and D 1s the diffusion constant
D=(RH/t 11 9
The carrier density n 15 proportional to the mass
density of the bulk. For fractal substrata, this
scales as n o R%™9, The conductivity exponent fi
1s defined by ats scaling with the linear size R,
65 @ R™* From egs. (2) and (7), D & /%% and
using 1t in the Enstemn relation of eq (6) we get
roc R2-4+#+4r Companing this to eq (2) we ob-
tam the relation

dy=2—d+di+fi (8)
Thus 1s to be compared to the classical conductiv-
ity exponent =0 of homogencous media (for
which d; = d and d,, = 2), showing the anomalous
conductivity that results because of anomalous
diffusion,

A more fundamental consequence of anoma-
lous diffuston anises when one looks at the density
of states tn a disordered substrate. The density of
states 1s relevant for any physical phenomenon
which 1s described by an equation of motion that
contains the operator v This includes, for exam-
ple, clectromagnetic, elastic, and quantum phe-
nomena. The density of states p(e) 1s related to
diffuston through P(0,7), the probability of a
walker to be back at the onigin at time #:

P(0,1) afo“’p(() exp(—~er) de o)

By the time ¢, a random walker has visited the
sites withm a volume R(2)% o 1%/4«, Therefore
the probability of returning to the ongin scales as
1/R% =9/« Using thus result in eq (9), one
finds

ple) & /i1 o (du/2=1 (10)
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where d, is the spectral {7), . ¢ fracton [§) dimen-
sionality for the density of states. This is similar to

the usual exp for h cous media, pl¢)
& ¢?72"1, except that d is replaced by the anorna-
lous d,=2d/d_.

As a final example of the physical conse-
quences of anomalous diffusion we would like to
mention diffusi ion sy in contrived
geometrics. It is well known that the reaction rate
in diffusion-limited reactions is proportional to
the volume covered by a diffusing reactant par-
ticle per unit time (this is known as the Wiener
sausage problem). Clearly, this is critically af-
fected by the irregularities of diffusion when the
substrate 15 a statistical fractal. This intriguing
topic 1s discussed in detail in the paper by Kopel-
man et al. [9]).

SUMMARY

We have presented an <lementary discussion of
the basic properties of fractals and how fractals
are useful for the modelling of disordered media.
Diffusion mn disordered media was shown to be
anomalous in that rather han following Fick’s law
(R¥) 1, it obeys (R?) & 1¥¥~, where d,, is the
anomalous diffusion exponent and is dependent
upon the specific characteristics of the substrate in
question. We then discussed some of the dramatic
consequences of anomalous diffusion, as mani-

fested in belk conductivity, the density of states,
and reaction mnates in diffusion-reaction systems.
The interested reader is referrad to more complete
reviews and 10 the specialized literature of the
fidld.
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Discussion of “Diffusion in disordered media™ by
Daniel ben-Avraham

George H. Welss
Notsovaed Irseirsses of Health, Betxesda MD 208924U.SA.)

Professor ben-Avrabara, in his Tecid article, has
indicated some of the simplest characierizaiions of
transport in 2 discrderad medium. What makes
the general analysis of such problems so difficult
15 th2t the ¢haracteristic function cannot casily be
used 1o g explicit r2p ations of the
sol.uwm 0 problcxm in which the medium is pot
i Neverthed because
d 1o disordered media arise nat-
-::all\ in a varety of scientific ficlds the general
area of diffusion 1n such media has become one of
central interest in contemporary chemistry.
mathematics. and physics. A sampling of some of
the many applications of the theory is to be found
in the a review by Alexander et al. {1}, a proceed-
ings of a meeting edited by Klafter et al. [2).
Excellent more ¢ hensive reviews of the sub-
Ject have been given by Haus and Kehr [3). and by
Hanlin and ben-Avraham [4].

Since one cannot, 1n general, find solutions to
the equations describing transport in a disordered
medium, how does one go about calculating some
of the properties of anomalous diffusion? Natu-
rally, in a field which has been so widely studied.
a great many theoretical techniques have been
tried, most of which lead to approximations to a
solution rather than explicit solutions. While a
preaise definition of the term “explicit solution™
may contain some ambiguity, the only nontnvial
modet of a disordered medium for which all of the
interesting  transport  properties are  basically
known is one originally suggested by Sinai [5). The
exact solution is due to Kesten [6). Sinai’s model is
that of a random walk on 2 one-dimensional lattice

L 3

in which, on a given step. the random walker can
move from site ¢ to 1 + 1 with probability p, or to
1~ 1 with probabilits 1-p,. The p, are assumed
10 be independent. idenucaliy distnbuted random
variables which satisfy the zonditions

ElpPet ot v e
‘ln = 0. E\'"l-r,; o<

1)

Let X, be the locaticn of the random walker at
step n. Kesten shows that the random variable
6”X, /In'n ¢ averges in distribation. and finds an
explicit representation of the distnbuiion as an
mnfinite serics. Unlike the examples cited by ben-
Avraham, the mean-squared displacement of the
random walk satisfies

E{X?)

In'n

—» constant (2}

as n — 5. There are many obvious generalizations
of this model for which one would want to see a
solution. but for which there are no exact results
available cither in the literature of mathematics or
physics. For example, 1t would be most desirable
to extend these results for the Sma model to
analogous random walks in higher dimenstons, n
addition to removing the restrictions on possible
steps of the random walks that they be to nearest
neighbors only. Another useful generalizaton s
that of obtaining an exact solutien of the corre-
sponding first passage probl for such rand

walks in the presence of absorbing boundanes.

s smmr — e ———
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Retated maierial by Solomon for the one-dimen-
sional case has been presented in the mathemat-
<3l litersture (7], and a more heuristic approach
has been takent in the physics litersture 1o find the
asymprotic sunival probability for a Sinai random
walk on a firite linc bounded by traps at cither
end [3). Clearly, it would be most useful to have
further models for port in 2 random enxiron-
ment that can be solved exactly. sf only because
most analyszs of such problems that have ap-
peared are approximate and one always likes to
have a benchmark for purposes of comparison.

In the absence of general methods for solving
problems of port in disordercd media invest-
gators have resorted to a large number of both
approxamate (which start from a nigorous formula-
tion of the dynamics) and heunistic techniques
which enabie ons to understand the dynamics of
such processes. We will mention just two of these
because of their populanty, although not neces-
saniy thar accuracy, in any given problem. The
first rather general method goes under the heading
of the effective medium approximation, although
there are many vanants in the literature. To sce
the basic ideas behind this method in the context
of a grossly simplificd model, let us consider a
lattice random walk on a line in which the random
walker moves 1t one direction only, which we
choose 1o be the positive x direction. Let &, be the
rate constant for the random walker to move from
1 10 1+ 1, and assume that the random walker ts
mually at 1=0. We will assume that the &, are
identically distnbuted independent sandom vana-
bles. Let p, 1) be the probability that the random
walker 1s at n at ume i. These probabiliies satisfy
the cguations

i’u(‘)‘:‘ —kopol1)
P =R, 4o (1) =R, p (1), n=123....
(3)

While these equations are readily solved exactly, 1
will use them to illustrate the basic :deas behind
the effecuve medium approximation as well as a
number of related techmques which have been
used 1n solid state physics. In the context of the
present problem, one assumes that there are a set
of probabilities, {g,(r)}, which approximate to

the solution 1o eq. (3). These are 1aken to be the
lution to the coupled set of egu:

g1) =~ L’K(l—r)qa(ﬂ 4z

4

4= [K=7)g,il7) ~ 4.(2)] d=. @

n=123,...
Thus. the Markovian equations in eq. (3) are to be
replaced Dy the coupled set of non-Markovian
cquations in ¢q. (4) in terms of an as yet unde-
termined hermmel, K{r). What we observe n the
formulation of ¢q. (4) 1s that the approximating
random walk takes place on a hne whose proper-
ties are transkationally mvamant. The crucal step
in the cffc :tive medium approxuimation s a tech-
nique for calculating the hernel K(7) 1n terms of
properties of the &,

A formal solution to ¢q. (4) 15 readily found.
Introduce the Laplace transforms §,(s) and K(s)
by

Gls)= [T a0 dr

° )
R(s)= ["e™K(1) de

(+]

One readily venfics that the Laplace transform of
the solution to the system of equations tn eq. (4) 1s

an(s) = Rr(s)/[s+ R(o™" ©

In order to find an expression for l\;(s) we
replace the onginal formulation given n eq (3) by
4 model in which only a single rate 1s random (it
doesn’t matter which one) whale the remainder of
the medium 1s regarded as having the properties of
the effective medium defined 1n e¢q (4) Let A, be
the single random rate constant. and let p, (1) be
the probability in this modified model, the ran-
dom walker 1s at n at ume r. The p, (¢) sausfy
the set of equation n eq. (4) with the exception of
the indices y and 7+ 1 for which the equations
become

B (D)= [K(t=1)p, 1 (7) dr=h,p, (1)
(]
Q)
v (D) =k,p, (1) - fo‘x(z—r)pﬂ.,(f)df
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The Laplace transform of the kernel K(r) is then
found from the solution to the transform of the set
of equations in ¢q. (7) by requiring that the expec-
tation of the solution to the modified system be
equal to the solution for the state probabilities n
the effective medium., ie.:

9.(1) = E{ p...(1)} ®

A solution for the Laplace transforms ﬁ“(:) and
Pye1 £3) 15 readily calculated from the combina-
tion of ¢gs. (4) and (7) to be

(R
(s=R())'(s+k,)

k,K(s)
(s+k,)[s+ l\:(.\')]"|

B As)=
®
ﬁ,u As)=

On making use of the requirement in eq. (8) we
find that K(s) 1s the solution to

1 f 1 }
———r— = —— 10
s+R(s) \sHkK (1)
where we have omitted the subscnpt on A because
of our assumption that the random rate constants
are identically distributed. It 1s easy to confirm
that the §,(s) can be expressed as

a9 =7 ) E(57) a1

which mmplies that the cructal quanuity for our
model 1s the expectation E[k/(s +R)] or, equiv-
alently, E{1/(s + k))

In the present completely tnvial model 1t 1s
possible to show that eq. (11) 1s equivalent to the
result found by taking the expectation of the exact
solution of eq. (3). This solution 15

- "okll‘ L
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The 1dentification of exact and approximate solu-
tions is not readily demonstrated for more general
models, and 1n fact the solution to the analogue of
eq (10) generally requires the solution to a tran-
scendental equation {3] What this means 1 prac-
tice 1s that one 1s practically hmited to the calcula-
ton of properties n the hmit s— 0, or equiv-
alently, in the it 71— 00 A discusston of the

crrors wcurred 1n the usc of the effective medium
approximation in the context of a simple one-di-
mensional example 15 contaned 1n the review by
Haus and Kehr {3]. One of the attractive features
of the effective medium approximation 1s that it 1s
no harder to treat problems in three dimensions
than it is for one-dimensional problems and the
accuracy of the approximation generally increases
as the number of dimensions ncreases. This 15 not
true for a number of other techniques that have
been applied to this general class of problems
(eg. the renormahzauon group approach sug-
gested in ref. 9 which 1s restricted to one dimen-
sion only).

Finally, we mention a complete phenomeno-
logical approach that has been successfully ap-
phed to problems of the transport of carniers
amorphous semiconductors [10,11}, as well as 1o
models for chromatographic kinetics [12] In the
first of these applications the transport s gener-
ally non-diffusive, while tn the second 1t may or
may not be diffusive. The model on which the
analyses are based 1s known as the continuous-time
random walk (CTRW) in the hteiature of physics
and physical chemustry {13,14] Ths class of mod-
els 1s based on the simplest prcture of a random
walk in which the displacement on a given step
and the time between successive steps of the walk
ar¢ both assumed to be idenucally distnbuted
independent random vaniables The space and time
variables are often assumed to be uncorrelated so
that the probability (or probability density) for the
displacement r, that follows an terstep tme ¢
can be wntten m factorized form as

f(ra) =p(r)¥(r) (13)

Only n the case mn which ¥(7) = k exp(—Az) 15
the resultng process Markoffian However, 1t 1s
known that provided that the first moment of
P(1) 15 finite and the varance-covartance matrnx
for the displacement consists of finite elements,
the asymptotic properties of the random walk in
an mfimte medm will be those calculated by
means of the central lunit theorem, which 1s equav-
alent to ordinary diffusion [14].

The principal 1dea put suggested by Scher and
Lax s that a detaled description of randomness
m a medum can be replaced by the randomness
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herent in the pausing time density ¥(¢) appear-
ing in eq. (13). This ansatz cannot be justified in
any detailed way although it has been justified in
the calcul, of one g y of physical

Ch and Intelt Lab: y Systems m
REFERENCES
1 S Alexander, J. B W R. Schnerder and R. Orbach,

E 1

in random one-dumensional systems,

by Klafter and Silbey [15]), but the consequences
of the theoretical development have been shown in
a number of studies, to wreld results in good
agreement with experimental data {16}. The key
assumption in many of these calculation 1s that
¥(t) behaves asymptotically as

W)~ 1o/ (14)
where 0 <a <1, so that the first moment of the
mterstep trme 1s infimte. Symmetrnic CTRWs which
have the property that single-step displacement
probabiliies have a finite expectation as well as
the properties m egs. (13) and (14) can be shown
to have the asymptotic property

E(r)~(y/T)" (15)
where E(r?) is the expected value of the mean-
squared displacement. When eq. (14) 1s vald the
asymptotic form of the probability density of the
displacement at time ¢ will also differ from the
Gaussian form that holds i ordinary diffusion.

Some of the properties and many of the appli-
cations of CTRWs satsfying eq. (14) have recently
been reviewed by Shlesinger {17) and some of the
mathematical properties of CTRWs based on the
assumption of eq. (14) are given i ref. 18. It must
be said that, because arguments based on CTRW
models can only be charactenized as having a
hand-waving character, the applicability of such
models to transport 1n disordered media can only
be ascertained on a case-by-case basis, and 1t 15 by
no means clear that CTRW approximations al-
ways lead to useful results.

I have presented only a small sample of an
enormous number of different approaches taken
m the hterature of physics and chemistry to the
general problem of transport m a disordered
medium. The development of techmques for the
solution, complete or partial, of these problems 1s
a particelarly active area of research i physical
chemustry, physics, and in probability theory. Some
of the basic phenomena that warrant mvestigation
have been very ably outlined in the article by
Professor ben-Avraham,

Rettews in Modern Physies, 53 (1981) 175-198
2 J.Klafter, RJ Rubinand M F Shiesinger (Edutors), Trans-
port and Relaxation in Random Materials, Wosld Saienufic
Publishers, Singapore, 1986
3 JW. Haus and KW Kehr, Diffusion 1n regular and dis-
ordered lattices, Physics Reports, 150 (1987) 263-406
4 S. Havhin and D ben-Avraham, Diffuston i disordered
media, Advances in Physics 36 (1987) 695-798
5 YaG. Sinas, Lorentz gas and random walks,:nJ Ehlers, K
Hepp, R. Kippenhahn, HA Wad ller and J Zattartz
(Edttors), Mathematical Problems in Theoretical Physics,
Spnnger-Verlag, Berhn, 1982, pp 12-14, Theory of Prob-
ability and Applications, 27 (1982) 256
6 H. Kesten, The hmut distnibution of Sinar’s random walk sn
random environment, Physica, 138A (1986) 299309
7 F Solomon, Random walks wn a random enwvifonment,
Annals of Probability, 3 (1975) 1-31
8 S Havhg, JE. Kiefer and GH Wess, The trapping prob-
Tem on a hine wath dichotomous disorder, Physics Review,
B33 (1988) 4761-4764
9 J Machta, R \ group approach to random
walks on disordered lattices, Journal of Stanstical Physics,
30 (1983) 305-314
10 H Scher and M, Lax, Stochastic transport in a disordered-
solid § Theory Physics Retien, BT (1973) 4491-4502, 11
Impunty conduction, 5402-4519
11 H Scher and EW M 1, A Jous transit-time dis-
persion m amorphous sohds, Physies, B12 (1975) 2455-
24N
12 GH Waess, Chromatographic kinetics and the phenome-
non of tailwg, Separation Scrence, 17 (1982) 1609-1622,
see ref 2 On a generalized transport equation for chro-
matographic systems pp 394-406
13 EW Montroll and G H Wass, Random walks on lattices
N, Journal of Mathematical Physics, 6 (1965) 167-180
14 GH Wess and RJ Rubin, Random walks and selected
applications, Advances in Chemical Physics, 52 (1983) 363~
508
15 J Kiafter and R Silbey, D of the t
random-walk equation, Physics Review Letters, 44 (1950)
$5-58
16 G Pfister and H Scher, Dispersive (non-Gaussian) tran
sient transport in disordered solids, Advances in Physics, 27
(1978) 747798
17 M.F Shlesinger, Fractal ume in condensed matter, Annual
Reviens of Physical Chenustry, 39 (1988) 269-290
18 H Weissman, GH Weiss and S tavlin, Transport proper-
ties of the CTRW with a long-tailed waiting time, Journal
of Stanistical Physies, 57 (1989) 301-317

e e,




= Onginal Research Paper 127

Chemometrics and Intelligent Laboratory Systems, 10 (1991) 127-132
Elsevier Science Publishers BV, Amsterdam

Low dimensional reaction kinetics
and self-organization

R Kopelman *, L W. Anacker, E Clement, L. Lt and L. Sander
Departments of Chenustry and Physics, The Unwversuty of Michigan, Ann Arbor, MI 48109 (US A )

(Receved 8 November 1989, accepted 23 February 1990)

Abstract

Kopelman, R, Anacker, L.W , Clement, E,, Ls, L and Sander, L, 1991 Low dimensional reaction kinetics and self-organization
Ch and Intell Lab ry Systems, 10 127-132

Diffusion-himuted reaction hanetics becomes anomalous not only for fractals, with their anomalous diffusion, but also for
tow-dimensional (one and twoy and disperse media, where the random walk is compact We focus on anmihulauon, recombination and

8 cnder quilib steady state (steady source) or batch (big bang) conditions The typal rcactions are
A+A— Products, A + B ~» Products and A + C —» Products We are interested 1 the global rate laws, and ther relation to
particle-particte d (€8, P ' and n 1 hbor d fi ) and in Jocal rate laws (1f definable)

Anomalous reaction hincucs (more than classical hinetics) > pamcular!y sensiive to umtial conditions, source term structure,
conservation taws (¢ g, equal densities for A and B), excluded volume cffects, and medium size, dimensionahity and anisotropy
Analytical formalisms, scaling atguirents, computer (and supercomputer) simulations and expenments (on chemucal and physical
reactions) all play an important role 1n the newly emerging picture

INTRODUCTION

This work can be viewed as a natural extenston
of the actvity dealing with relaxation phenomena
and transtent kinetics problems in disordered
media {1-4], Ity domain of application spans var-
ous areas of the physics and chemistry of con-
densed matter. For example, reactions of the type
A+A-0or A+T=T arc models describing
exciton kanetics an disordered molecular crystals
or polymer blends. Reactions of the type A + B -»
0 are found in solid state physics in the case of
clectron-hole anmhilation or defect fusion. A
combmation of expeniments and Monte-Carlo
simulations [5] has paved the way for a new theo-

0169-7435/91/50350  ©1991 ~ Elsevier Saence Publishers BV

retical understanding of steady-state rate laws and
the kinetic self-orgamzatton of atoms, defects and
elementary excitations in low dimensional media
Thus theory is presented below.,

Diffusion inmted trapping is of particular inter-
est i studies of cnergy migration and lumines-
cence {1,5). We present below some new simula-
tions and their relation to theory. This includes
both rate laws and sclf-ordening, Of particular
interest 1s the resulung anomalously high partial
order of reactions as a function of trap concentra-
ton,

‘Big-bang’ reaction models are simpler than
steady-source models. The pioneenng work has
been done by Ovchinmkov and Zeldovich [6] and

e LA - ——— - - e P
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by Toussamnt and Wilczek {7}, with applications to
fractals by Klafter et al, {8}, Kang and Redner [9)
and Klymko and Kopelman [10}. However, these
ignored both finite size effects and finite correla-
tion effects (at time zero). We demonstrate here
that these fimite extent effects give rise to new
scaling effects, i e, anomalous ume exponents and
reaction orders. In particular, for the A + B reac-
tion i one-dimension the time exponent nses
from 1/4 (Zeldovich value) to 3/4 or 1 (depend-
mg on boundary conditions).

THEORY STEADY-STATE DIFFUSION CONTROLLED
BIMOLECULAR REACTIONS

In the classical prcture, all bimolecular reac-
tons are the same and the distubutton of re-
actants 1s at random  Also, the reaction rate 15
proportional to the product of the reactant densi-
ties (overall order of reaction X =2). Previous
works show that the time dependence of such
reactive systems, relaxing from an miual random
situation, exinbits anomalous decay rates mn low
dimensions due o local fluctuations 1n reactant
density [6~9]. Here we report the results of a
theoretical mvestigation on the steady state prop-
erties of three different bimolecular diffusion
Iiarted reactions, taking place on regular
Euchdean spaces and on fractal structures [11-13},
We show that the relevant parameter describing
the steady state of the reaction kinetics 1s the
spectral dimension d,. The spectral dimenston 1s
anntrnsic parameter characterizing energy trans-
fer properties, and in particular, diffusion m a
medium, For Euchdean structures, d, is the
Euclidean dimension d, and the case of Euclidean
spaces 1s viewed as an extension of the fractal case
when we take o = d, The reason for the influence
of the spectral dimension on reaction kinetics is
due to the fact that d, controls the time depen-
dence of the number of distinct sites visited by a
random walker. For spectral dimension d, <2 we
show that a bimolecular reaction mduces a self-
orgamization of reactants up to a scale A such
that:

Asgd? o< 1)

o ACAA & A
® AAAA AA
@ TCTOAT aAT

Fig 1 Schematic represertation of the three cases of self

ization on a di system The arcled do-
mains represented here are of the order of A, the self orgamza-
ton scale. 1(a) 1s a depletion 1n the A+ A ~0case I(b)is a
Segregation in the A+B 0 case 1(c)1sa trap-particle deple-
ton 1 the A+T = T case

where 7 1s a charactenstic ime which 15 situation
dependent. For d,> 2, A 1s microscopic and nde-
pendent of r, therefore no large scale structure
exists and the reaction kmnetes 1s classical. The
case d, =2 1s found to be the critical dimension of
the problem, where we find a marginal loganthmic
dependence of A with 7. Below the cntical diraen-
sion, farge scale density fluctuations become rele-
vant and each situation has 1ts own phenomenol-
ogy (see Fig. 1) In particular, we may find macro-
scopic reaction laws with anomalous reaction
orders (larger than 2) or anomalous rate constants
In all the cases nvestigated we found that the
scaling behavior of the self organization length
can be case m an interesting general way For
every dimension we can wrte;

Asa=5,V,

where a 1s the nucroscopic scale, S, 1s the volume
effectively explored by a particle during the time ¢
(num er of distinct sites visited) and ¥, 1s the
total (cumulative) volume swept out (proportional
to 7).

In bimolecular diffuston hmuted processes the
overall balance between reaction rates and steady
state densities is accounted for by the Smoluchow-
ski boundary condition;

Q={(pp)/A

where p, and p, are, respectively, the steady state
densitics of reactants 1 and 2 (1 and 2 can be
identical species). The scaling dependence of the
self-organization scale A on 7 1s at the ongin of
the non-classical behavior.
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In the case of homomeolecular anmthilation, A
+ A~ 0, A is a typical scale of depletion around
each reactant and 7 is the typical reactant hfe-time
with:

1=p/Q

where p is the stead; state density of A. We
obtamn an anomalous effective reaction order:

X=1+42/d, d <2 (2)

In the case of heteromolecular anmiulation,
A+ B—-0, X 1s the scale of a self-organtzation
phenomenon called segregation. At steady state,
domains of 1dentical spectes with stzes comparable
to A bwld up in the medium The situation 1s
mure complex than in the homomolecular reaction
case and 7 1s found to be dependent either on
source conditions or on some intrnstc particle hife
ttme We scparated the source terms into two
main categrarcs, In the first category we consider
sources fo which at any time an 1dentical number
of As anc Bs 1s conserved m the mecwm, If
reactants ar. created at random, we find:

T~ ]2

where L 1s the system size. We observe a size
dependent segregation. With the same conserva-
tion constramt, if the particles are created as A-B

pairs with A and B separated by a distance 8, we
have.

=8

The segregation scale becomes dependent on &, It
ts important to notice that for gemnate creation,
we obtain a microscopic segregation scale and this
situation becomes analogous to classical hinetics
In the second category, we consider sources where
the conservation constraint 1s removed. If no other
decay mechamism 1s present, fluctuations 1n par-
ticle difference grow unul we have a complete
saturation of the loop with one of the species.
There 15 no reactive steady state. If an extra (first
order) decay mechamsm 1s considered, fluctua-
tions grow up to a size defined by the mntrinsic
feme of the decay mechamsm, In paruicular if
we consider vertical annihilation with an external
rate of particles R we have:

saR7!

In this case we obtain at low density an effective
reaction order:

X=4/d,

On the other hand, 1f the decay 1s controlled by an
intrinsic mechanism A -0 and B - 0, with the
same rate constant K, then we have

r=K!

We induce a K dependent segregauon but no
anomalous reaction order These last three cases
are mmportant for practical applications because,
besides germnate particle creation, it 1s difficult to
find a source satisfymng the exact conservation
constramt However, though the conservation 1s
not exact, these cases lead to a mesoscopic segre-
gation (or a total saturatiun),

For the trapping problem, A+ T—>T, the
fluctuation of the trap distnbuuon 1s found to be
unimportant for the leading scaling behavior of
the self organization length A The relevant fact is
that we have, for d, <2, an organization of par-
ticles A around the traps The typical hfeume at
steady state 1s

7=p/Q

with p the density of A and Q the reaction rate
The scale of the trap~particle organization 1s
A=l

where ¢ 15 the trap concentration We have the
anomalous rate law,

Q= pc¥/ ]
with an anomalous order relatvely to the trap
concentration.

X=2/d,

and we note that the overall reaction order is
14 2/d,, the same as for the A + A = 0 case.

SIMULATIONS OF STEADY-STATE TRAPPING

We tested the trapping eq. (3). The Monte-Carlo
simulations at the John von Neumann National
Supercomputer Center give, for the Sierpinsky
gasket, a partial order Y= 1.02 1 0.02, with re.
spect to the parucle density p, and a partial order
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Fig 2 Distnb of

for two trap con-

onap cluster at hty The traps are
the black arcles On Fig 2a the trap concentration 15 005 On
Fig 2b the trap concentration 1s 0 008

X = 1.47 4 002, with respect to the trap densuty ¢.
This 1s in excellent agreement with the predictions
of eq. 2): Y=1 and X=2/d,=1465 (d,=
1.365). Sumlarly, the latons for the critical
percolatton cluster are in excellent agreement with
the eq. (2) predictions Y=1 and X=2/d, =15
(d, = 4/3). In addition, the depletion zones around
the traps can be scen qualitatively in Fig, 2.

SIMULATIONS OF A TRANSIENT A+A -0 AND A+B

-0

We have employed three types of landing rela-
tionships: corrclated, random and evenly spaced
landings. When a particle is added to a site oc-
cupied by another particle, the landing particle
may mmmediately try to land on another empty
site, which 1s called ‘forced landing’. Particles
randomly move on a lattice

Correlated landing occurs when a pair of par-
ticles lands simultancously, separated by a certain

ber of lattice sp (1) One particle of the
pair randomly finds an empty site on which to
land; then the other particle chooses a site in a
random direction at the correlation length dis-
tance from the first particle, If this selected site
for the second particle 1s occupied, both particles
of this pair will repeat the process described above
until they find two empty sutes at the correlated
distance,

Random landing occurs when two particles of a
pair are independent of each other, and all sites in
a latuce have equal probability for a particle to
land. Effectively there are no ‘pans’.

Evenly spaced landing 1s used only in simula-
tions of transient reactions Particles are distrib-
uted throughout the lattice, and have an equal
distance between each other. This interval 15 equal
to L/N, and 1s chosen to be integer, where L 15
the latuce length and A, 1s the number of the
particles at (= 0,

Since the kinetic equation can be wrtten for
long times,

p~1" )
the hinetic data 1s plotted as In p vs Int. The
least hinear square fit 1s applied to find the slope
of each part of each hne, which 1s cqual to —a in
cq. (4).

Correlated landing for A+ B — 0

A. For n=1. Two kinds of landing arc m-
vestigated. One is a pair of particles of AB with a
defimte onentation (¢g, AB AB AB...). The
other one 15 a pair of particles of AB with random
onentations (e g , AB AB BA...) These two cases
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95 35 76 oa 133 160

Int
Fig 3. Inp/py vs. Inz for A+B =0 transient reaction on
one-dimensional Tattice (30000 sites) with py = 005, From top
10 bottom, the correlated landing lengths are 1000, 100, 64, 16,
and 1. The dashed hines are fitng lines. (1) with the slope 0.5,
(2) with the slope 06, (3) with the slope 07, and (4) with the
slope 025

have shown the same result — a strarght hine with
a slope 05. It 1s mportant to notice that this
result 1s the same as that m the A+ A - 0 case
(see below).

B For n> 1. The slopes of the lines mcrease
(from a value 0 25) after 1> n? (see Fig 3), which
15 considered to be the effect of correlation mn
landing processes. As n increases, the slopes, at
long times, crease toward the value 0.75.

For n> 1, there 1s no finite size effect, 1.e, no
second transition of the slope was found (see the
bottom curve in Fig. 4)

6%.0 44 68 92 112 140
Int
Fig 4 Inp/p, vs Int for A+B =0 transent reaction on
onc-dimensional fatuce "000 sites) wath =020 From top
to bottom, they are random Janding with reflecting boundary
condition, random landing with penodic boundary condition,
and correlated landing with the correlated landing lengths 50
The dashed lines are fitung bnes (1) wath the slope 10, (2)
with the slope 075, and (3) wath the slope 025

Random landing for A + B = 0

Two types of boundary conditions are applied:
periodic and reflecting boundary conditions In
both cases, the slopes increase (from the value
0.25) at long tumes (see Fig. 4), which 15 consid-
ered to be a finite size effect However, important
differences between these cases were observed.
The a-value is ligher with peniodic boundary con-
ditions (~ 1.0) than with reflecting boundary con-
ditions (~ 075).

A+A—0

Both random landing and correlated landing
processes are sumulated. Under the penodic
boundary conditions, netther the effect of corre-
lated landing nor the fimte size effect can be
found m the A + A — 0 case (see top two lines in
Fig 3), straight lines are found with the slope
0.50. However, under reflecting boundary condi-
tions, at long time, a shight deviation from the
slope 0.5 15 observed

Our results essentially agree with prelimmary
contimnuum models [14), replacing the Zeldovich—
Kang-Redner time exponent —d, /4 (for d, < 4)
with —~(d, + 2)/4 (for d < 2), for ughtly corre-
lated systems or timte-sized lattices However, they
emphasize the relative importance of the average
nterparticle distance and the finite scale of the
latice or of the correlation m the source. In
paruicular, for gemmate landing, we do not ob-
serve a change in slope at late times.
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Abstract
Watz, DA, Lin, MY and Lindsay, H M, 1991 Universality laws 1n coagul Ch and Intell Lab ry Systems.,
10 133-140
We show that the process of irreversible, kinetie collord aggreg: exhubits I behavior, independent of the detailed

chemucal nature of the colloidal particles Modern methods of statsstical physics, apphied to a kinetic growth process pronide a good
basis to model the observed behavior Two himuting regimes of collord aggregation are identified rapad aggregation, himuted sofe’y by
the diffusion of the growing clusters, and slow aggregation, hnuted by the reaction rate that leads to the formation of bonds between
the clusters In each regime the cluster structure 1s fractal, with fractal dimension dy ~ 1 8§ for diffusion-hinuted clusters and dy~2 1
for reaction-lmuted clusters A scaling method 4s used to compare dynamic hght scattening data ob d from pletely duffl
collonds aggregated under the two hmiting conditions, These data provide a cntical comp of the beh of the d
collords, and confirm the umversality of cach imiting regme of collord aggregation

INTRODUCTION the great complexity of the problem has hmited
the extent of our understanding of the process

The aggregation of colloidal particles to form  The structure of the clusters is hghly random and
larger clusters 15 a process of wide technological disordered, making a quantitative analysts of their

unportance and of great scientific interest. It has
been the subject of serious sctentific study for well
over one hundred years. However, until recently

* Present address Nauonal Institute of Standards and Tech.
nology, React A106, Gaithersburg, MD 20899, U S A.

0169:7439/91/503 50 © 1991 - Elsewier Science Publishers BV

shape quite difficalt. Furthermore, a wide variety
of different types of behavior can seen for even a
single collord. This has precluded the development
of a simple theoretical understanding of this com-
plex, yet important process.

More recently, however, sigmficant progress has
been achieved m our understanding of irreversible
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colloid aggregation [1--3). The impetus for much
of this progress has been the recent developments
in statistical physics Scaling concepts, which have
found so much success n describing such reversi-
ble processes as phase transitions, have now also
been applied with simular success to irreversible
kinetic growth processes, such as colloid aggrega-
tion Indeed, recent work has shown that irrevers-
tble colloid aggregation exhibits umversal behav-
1or, wiuch transcends the chemicals details of the
particular colloid system, and which provides a
umified, and relatively simple, description of this
complex process [4,5] In this paper, we present a
brief review of the recent applications of these
concepts of modern statistical physics to collod
aggregation, and discuss the umversal features that
have emerged.

There are two general classes of colloid aggre-
gauon which have been widely studied {1]. Both
begin with a monodisperse suspension of small,
solid particles undergoing Brownian motion When
the aggregauon is imtiated, the diffusive motion of
the particles leads to collisions between them,
causing them to stick together and form larger
clusters In the first class of aggregation, the clus-
ters, once formed, no longer diffuse, and all aggre-
gation 1s due to the accretion of single particles
Tius class 1s called single parucle aggregation By
contrast, in the sccond class, the clusters them-
sclves continue to diffuse, colide and form yet
larger clusters As the clusters grow, what began as
a monodisperse distnbution of single particles
evolves into a very complex distribution of clus-
ters of different sizes. This class is called cluster-
cluster aggregation Both types of aggregation have
been extensively studied theoretically. However,
most cxperimental studies of collord aggregation
have focused on the cluster-cluster class, as it 1s by
far the most commonly encountered.

Several key features characterize any aggrega-
tion process [3). These mclude the structure of the
clusters, the kinetics of the aggregation and the
shape of the cluster mass distribution and its
evolution m time. It is in the description of each
of these features that the application of modern
methods of statistical physics and the concepts of
scaling has provided such progress. The first ap-
plication of these techniques was to the descrip-

tion of the structure of the clusters. The cluster
structure 1s highly random and disordered, and
had long deficd any quantitative description
However, the cluster structure can, in fact, be
quantitatively parameterized by means of a type
of symmetry, that of mmvanance under a change
length scale, or dilation symmetry. Thus collordal
aggregates can be characternized as fractals [6], and
their structure can be quanutatively parametenzed
by means of thetr fractal dimension 7] The aggre-
gation kinetics, and the shape and tme evolution
of the cluster mass distnbution can both be
addressed through the application of scahing, m
this case, m time The shape of the cluster mass
distubution 1s found to be mvanant mn time, with
all the ume dependence described by the evolution
of the average cluster mass (8,9].

The fundamental property which determines
the nature of cluster-cluster aggregation 15 the
form of the nteraction potential between two
collowdal particles as they approach one another
{10] Collowdal particles which are stable against
aggregation have some form of repulsive mterac-
tion which prevents two approaching particles
from touching and sticking together This repul-
sion 1s often due to charged groups adsorbed on
the surface of the colloidal particles, but can also
anse from other sources, such as a thin coating of
polymer on the particle surface The height of the
resultant repulsive barner, E,. must be much
greater than kT for the colloid to be stable
agamnst aggregation If K, 1s reduced, colliding
particles can surmount the barner, and stick to-
gether, thus imtiating the aggregation process. The
rate of aggregation will be deternuned by the
probability, P, that two particles will stick upon
colliding. This 15 determined by the height of
remaning barnier, and 1s given by P ~ exp(— %,/
kgT).

The exponential dependence of the sucking
probability on E, makes the aggregation rate very
sensitive to the value of the repulsive energy bar-
rier, and a very wide range of aggregation rates
can be obtamed with any colloidal suspension.
However, there are two charactenistic, imuting re-
gimes of aggregation (11}, In the first, the repul-
swve barner 1s removed completely, so that £, <
ABT and P = 1. In this case, every collision results
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1 the particles or clusters sticking to one another,
and the aggregation rate 1s limted solely by the
tune between diffusion-induced collisions This
class of aggregation 1s called d:ffusion-limuted col-
loidal aggregation (DLCA). In the second regime,
the repulsive barner 1s reduced only a small
amount, so that E, > kT, and P 1s very small. In
ths case, a large number of collisions are required
before two particles or clusters stuck to one
another, which himuts the aggregation rate, Ths
regume is called reaction-limited coiloid aggrega-
ton (RLCA) The two regimes lead to very rapid
and very slow aggregation respectively, and have
been recognized as such in the traditional colloid
hiterature {10}. However, they also form two limut-
1ng types of behavior, with distinct, and universal
features characteristic of cach.

The ‘rules” which determune the aggregation in
each regime are quite simple. In DLCA, two clus-
ters such immedtately upon contact, and the diffu-
swve nature of the motion of the clusters plays an
important role m determintag both their structure
and the aggregation kinetics, The diffustve motion
ensures that the clusters always stich to one
another at the edges, making the resultant aggre-
gates signtficantly more tenuous. By contrast,
RLCA, the sucking probability 1s so low that, on
an average, statistical bass, two clusters can adopt
any bonding configuration that 1s physically possi-
ble, since the clusters have sufficient opportunity
to explore ail possible configurations Thus the
diffusive nature of the cluster motion does not
play a significant role in the aggregation process,
and the clusters no longer stick solely at the edges,
making therr structure sigmificantly less tenuous
In both regimes, the bonds between particles, once
formed, are assumed to be both permanent and
ngid, so that no further change n their structure
occurs as the aggregation proceeds.

The nature of the interparticle interactions de-
termunes the kinetics of the aggregation process,
the kinetics 1 turn play a significant role m
determmmg the structure of the clusters formed,
and the shape of the mass distnbution of clusters.
Furthermore, since a very large number of clusters
are mvolved 1n any aggregation process, and since
the details of the structure of cach clusters are not
as wmportant as the overall features, a statistical

description 15 well suited to descnibing the physics
The basic sumphicty of the underlying physics
facilitates modehing the aggregation process The
models developed deat solely with the nature of
the anteraction and the resuliant “rules” which
determine how clusters move and stick to one
another. Thus, these models are independent of
the detailed chermcal nature of each colloid, and
should apply equally well to all colloids. It 1s m
this sense that the description of colloid aggrega-
tion should be universal.

THEORY

The two linuting regimes of cluster—cluster ag-
gregation have been studied ex‘ensively, and an
elegant and detailed picture of thear behavior has
now been developed [1,3] The theoretical work
has entailed two basic approaches the simplicity
of the rules of the aggregation make computer
simulation a very powerful method for studying
both regimes, and considerable knowledge has
been obtained about the structure of the clusters
and the shape and time evolution of the cluster
mass distribution [12] The aggregation kinetics
and the cluster mass distnibution have also been
studied extensively through the use of the
Smoluchowski equations [13}. These are a set of
rate equations which assume that the aggregation
rate between two clusters depends solely on their
masses Scaling techmques have proven to be well
sutted to the study of these equations [8,9}, Expen-
mentally, a wide range of colloid systems have
been studied using many different techmques Ex-
cellent agreement 1s obtained between the expert-
mental observations and the theoretical predic-
tions {14,15},

Each regime 1s distingwished by several distinct
characteristics. the clusters formed in each regime
are fractal, so that thewr mass scales with ther
radius as M = (R/a)%, where a 1s the radws of a
single particle and d; s the fractal dimension,
which 1s non-integral and less than the dimension
of space. For DLCA, d;~ 1.8 while for RLCA,
dy~2.1. The cluster mass distnbution n each
regime exhibits dynamic scaling and can be wnit-
ten as N(M) =M% (M/M), where the scaling
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function, L(M/M) describes the shape of the
cluster mass_distribution and is independent of
time, while Af is the mass of the average cluster
and reflects all of the time dependence of the
aggregation. For DLCA, N(Af) is slightly peaked
around the average mass with an exponential
cutoff at larger masses. For RLCA, the cluster
mass distribution bas a power-law form with an
cxponential cutoff a1 large mass. N(M) ~
A772M" exp(— M/M). The kinetics of the ag-
gregation arc determined by the time dependence
of M: for DLCA, 3 grows linearly with time,
while for RLCA it grows exponentially with time.

EXPERIMENTAL

To experi fly demc the wuniversal
features of colloid aggregation, we compare the
behavior of three completely different colloids:
gold. sthca and polystyrene latex [4). Each colloid
1s compnsed of a different ma.enal, each colloid
1s imtially stabilized by completely different func-
tional groups on their surfaces; the aggregation
for cach colloid 1s 1niviated in a different manner,
the mterparticle bonds 1n the aggregates for each
collond are different. and each colloid has a differ-
ent pnimary particic size. However, each collord
can be made to aggregate by either diffusion-
linmted or reaction-limited kinetics.

The colloidal gold has a particle radius of a=
7.5 nm and an mitial volume fraction of ¢, = 1075,
It 1s stabilized by citrate 10ns adsorbed on the
surface The aggregation 1s initiated by addition of
pyridine, which displaces the charged 10ns, reduc-
ing the repulsive barrier between the particles. The
amount of pyndine added determines the aggrega-
tion rate: for DLCA, the pyridine concentration is
102 M, while for RLCA. 1t 15 about 10~5 Af. The
terparticle bonds are metallic.

The colloidal silica used 1s Ludox SM obtamed
from DuPont It has particles with a=35 nm,
and is diluted to ¢, = 107, It 1s initrally stabilized
by OH™ or SiO~ on the surface. The pH 1s kept
< 11 by addition of NaOH and the aggregation 1s
mitiated by addition NaCl, which reduces the
Debye-Huckel screening length, thereby reducing
the repulsive barner between the particles. For

DLCA. the salt concentration 1s 0.9 M. while for
RLCA. it is 0.6 Af. The mterparticle boads are
believed 10 be silica bonds.

The polystyrene latex has #=19 nm and s
diluted 10 ¢, =10"% It 1s initially stabilized by
charged carboxylic acid greups on the surface of
the particles. Addition of HCI to a concentrancn
of 1.2 M is used to neutralize the surfzce charges
and d the screening length to tnitiate the
aggregation for DLCA. For RLCA. NaCl 1s added
to a concentration of 0.2 M. 10 reduce the screen-
ing length and initiate the aggregauon. The par-
ticle surfaces deform on bording leading to large
Van dzr Waals interacuons beiween the bouad
particles.

To study the aggregation of cach colloid and to
critically compare their behavior in the o re-
gimes, we use light scattering {16). Stauc light
scattenng 15 used to the fractal 4
of the clusters, while dynamic hght scattening 1s
used to follow the aggregauon kinetics. In ad-
dition, the dynamic hight scattenng data obtained
from cach colloid in cach regime can be scaled
onto a single master curve. The shape of this
master cun e 1s very sensitine to the features of the
aggregation process. depending on the detaled
structure of the clusters and the shape of the
clusters mass distribution. However. all features
particular to the mndividual collowds are scaled out
of the master curve, allowing the cunes from the
different colloids to be compared directly, with no
frec parameters, providing a cntical test of the
unnersahty of colloid aggregation 1 cach of the
two limiung regimes [4).

RESULTS

Stauc hght scattening measures the time aver-
aged scattering intensity from the sample, I(g), as
function of the scattening wavevector, ¢ = (d=ny
A)sin(8/2), where A 1s the incident wavelength in
vacuuo, n is the index of refraction of water, and
8 15 the scattering angle. Dynamuc scattenng mea-
sures the temporal autocorrclation function of
fluctuations n the scatienng mtensity resulting
from the diffusive motion of the clusters. We
measure both the total scattered intensity and the
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autocorrelation function concurrently as functions
of the scattering angle. and acnce the scattering
warerector. The excitation source 1s the 488-nm
Iine of an Ar” laser. and the accessible scattering
rectors are 0.003 s g5 0.03 nm ™.

Static light scattening probes the internal struc-
wre of the aggregates. Because the fractal clusters
are self-similar in structure, the scatter »d intensity
from cach cluster depends only on the product
qR,. where R, is the radius of gyration of the
cluster. At low gR,. the internal structure of the
aggregate is not resolved. and the scattered inten-
sity 1s 1sotropic. mdependent of g. At hugh gR,.
however, the intemal fractal structure 15 resolved
and the scauercd antensity scales as (qR,) ™. The

y 15 a weighted average over the
cluster mass distnbution. Howeser, for aggregates
that are sufficrently large, the total measured in-
tensity also exhibits the fractal scaling in g, allow-
ing d; to be determined directly. The static light
scattering obtamned from all the colloids in each
regime is shown 1n Fig. 1. In each case, the data
were collected only after the clusters were suffi-
ciently Iargc that gR > 1, where R is an average
cluster size. The hnear behavior in the double
Togarithmic plots confirms the fractal structure of
the aggregates. The upper three data sets are ob-
tamed from clusters prepared under DLCA condi-

tionss and have d, = 1.56 for the gold. dy= 185
for the silica and o, = 1.82 for the polystyrenc. To
within the experimental error of rougkly £0.05.
these results are identical. By contrast, the lower
three data sets. which are obtained from clusters
prepared under RLCA  conditions. have con-
sistently higher values of the fractal dimensions,
with d=2.13 for the gold. d, = 2.07 for the silica
and dy = 2.09 for the polystyrene. These values are
agzin equal to within experimental ervor. Thus
these results demonstrate the universal behavior of
the structure of the fractal colloid ageregates in
cach of the two regimes.

Dynamic light scattering probes the diffusive
motion of the clusters. When the dusters are large
enough that their intemal fractal structure can be
resolved. both thar lational and ional
Qiffusion contribute to the fluctuations [17]. Here,
we consider only the first cumulant [18]. or the
initial logarithmic denvative of the autocorrelation
function of the intensity fiuctuations. This 1s given
by T}, = ¢°D(gR,). wheze the effective diffusion
cocefficient reflects the contribution of both trans-
lational and rotational diffusion When gR, < L
only translanonal diffusion contnbutes and
Dy(qR,) = D ={/Ry,. where =K, T/6=7 and
1 is the fluid viscosity. The hydrodynamic radius
1s related to the radius of gyration of the cluster,
Ry =BR,. with B~ 1. For gR,_>> 1. rotationai
diffuston also contnbutes and D, ~ 2D.

The cffective diffusion cocfficient determined
from the d first « [ is again a
weighted average over all the clusters in the distn-
bution. It is given by

3 T N(M)I(gR,) Dy
= Ty N I(gR,)

In the hmit of gR — 0, D, = D. providing a good
measure of the average cluster size. R={/D.
The combil of the itivity to the cluster
ass distribution and rotational diffusion leads to
a pronounced ¢ dependence 1n the measured _D-,,,,
and provides a very sensitive probe of the aggrega-
tion process [4,16] However, to fully explore this
q dependence at a single point 1in ume during the
aggregation process would require an experinca-
tally mnaccessible range of scattering angles. In-
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stead, we exploit the dynamic scaling of the clus-
ter mass distnbution to measure Dy over T a much
wider range of qR Thus, we determine Dd, over
the range of g experimentally accessible and re-
peat the measurements during the aggregation
process, as R increases, while the shape of the
cluster mass distnbution remains unchanged. The
values measured at cach g are interpolated to
obtain a scries of data sets, each consisting of
D.1(g) evaluated at the same time. We normalize
D,y by D, and plot the data as a function of ¢R,
where the required parameter, D ={/R, for each
set is determined empincally by scaling the data
onto a single master curve. With sufficient data,
there 1s always a substantial overlap between data
from different sets, making the scaling unambigu-
ous. All material parameters are scaled out, so
that these master curves provide a means to cnti-
cally compare the behavior of completely different
colloids

The master curve obtained for each collord
aggregated under DLCA conditions are shown in
Fig. 2, while the master curves for each colloid
aggregated under RLCA conditions are shown m
Fig. 3. The shape of the master curve for DLCA 1s
quite different from that of RLCA. Thus reflects
the different shapes of N(M) for each regime,
with the power-law form for RLCA leading to a
considerably stronger g-dependence of the master

curve. In each rchme. the masier curves for (he
three colloids are indistinguishable. We emph
that the master curves for each colloid arc ob-
tained independently. and there is no free parame-
ter in comparing them. This is striking evidence of
the universality of each of the regimes of colloid
aggregation.

The solid lines drawn through the master cunes
arc the calculated values using eq. (1), with the
forms for N(AM) expected for each regime and a
form for I(qR,) obtained from computer simu-
Tated clusters for the appropriate regime [19). The
agreement is very good, except for DLCA at large
gR. The calculation for the RLCA regime allows
us to determine the cluster mass exponent, 7= 1.5,
which i5 1n accord with theoreucal predictions
based on the Smoluchowski equations [20).

The scaling values of R also allow us to de-
termine the aggregation kinetics of cach colloid in
cach regime. We show the results for the DLCA
regime in Fig. 4, where we plot R as a function of
aggregation time 1, in a double loganthnuc plot
{14). The hinear behavior exhubited by each colloid
confirms the power-law kinetics, the slopes, com-
bined with the d fractal d ns, give
the power law for the growth of the average mass
In all cases, this exponent 1s 1 to within expen-
mental error. The different offsets of the three
curves reflect the differences m the tmitial con-

%37 0.5 1 1 5 1020 50100

qR

N 4 ind. 4. 4

Fig. 3. Master cunves y from
light scattenng data from cach of the lhree wllonds aggregated
under reaction-imuted condiions The curves are indis-

ishable, d the hity of RLCA, The
sohid kine 15 the calculated behavior O = Gold, + = silica,
X e polystyrene
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Fig. 3 The aggregauion hnctics of the diffusion-hnuted aggre-

gauon of each of the three collords obtamed from the scaling
of the data onto the master curves. The stopes of the power-k

modifies the sticking probability at early time
Nevertheless, all collods display exponential
growth of the radius of the average cluster, and
hence of the mass, as expected.

CONCLUSIONS

In summary, we have shown experimental evi-
dence to demonstrate the umversal features of
colloid aggregation. Two lnuting regimes are ob-
served- fast, diffusion-lanited and slow, reaction-
limited colloid aggregation Each regime follows
umversal laws that descnibe its behavior In many

lunetics and the fractal dimensions show that the average
cluster mass grows hinearly wath time mn 2H cases 0 =Gold,
+ =silica, + = polystyrene.

centrations. The results for the RLCA regime for
each of the colloids are shown tn Fig. 5, where we
now use a semiloganthmic plot to show the ex-
poncnual growth observed for each colloid [15]. In
this case, the different slopes reflect the different
wnitial aggregation rates of each colloid, which do
depend on the details of the chenustry Indeed, for
the polystyrene, some ume apparently ¢lapses be-
fore the final aggregauon rate 1s achieved. We
beheve that this 1s caused by the deformation of
the particles which occurs on bonding and which

5000

2000
- 1000}

Fig $ The aggregation hinetics of the reaction-lmited aggre-
gaton of each of the three collords, demonstrating the ex-
ponential kinetics n cach case. O = Gold, + =silica, ¢ =~
polystyrenc

expen 1 ons, these imiting regimes are
not achieved. Nevertheless, the overall aggregation
behavior can usually be descnbed n terms of
these two regimes Typically the imual stages of
the aggregation are controlled by some nter-
mediate value of the sticking probability, and the
aggregation 1s not strictly diffusion-limited. In-
stead, at the earlies times, 1t can be approximated
as reaction-lmuted However, as the aggregation
proceeds, and the concentrations of clusters de-
creases, their spacing mcreases, and diffusion be-
comes increasingly important as a rate hmiting
step Thus at longer times the aggregation crosses
over to diffusion-hrmted Thus, these two lmuting,
and umwversal, regumes provide the basis for de-
scrbing a large range of behavior for coilowd ag-
gregation
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Abstract

Osteryoung, J, 1991 Inference of mechamsm from kinetic analysis of pulse volt tnc data  Chemometrics and Intellig,
Laboratory Systems, 10 141-154

Voltammetry provides direct access to knetic information in that the measured quantity, current, 15 1tself the rate Kinetic analysis
of voltammetnic data generally focuses on the potential dependence of the current, For histonical reasons, the most common method

of analyzaing data 1s to transform the data, often by very clab hods, to yield a p |-dependent rate which s
then plotted as a loganthnuc function of p 1, This procedure requires extnnsic normalization factors which casily can
introduce systematic error In a few lly sound methods have been eroployed for analysis of data One approach
employs a nonl least squares proced quivalent to the method of maximum lkehhood In addition to providing opt.mal

values of kinetic parameters without recourse to other data, this method also provides confidence regions at a hnown level of
confidence Thus method 1s lmplcmcmod by the COOL algonthm, which has been dcscnbed An important ancllary factor 1s that the
COOL algonthm runs in *real-time’ for many probl Thus paper descnbes these hods of analysts by using the
parucular example of slow charge transfer Thc sensitivity of the analysis to chunges m values of parameters 1s exanuned by
computation of confidence regions Then three specific hinetic problems are used to iilustrate the types of questions which anse in the
mnference of mecharasm The fiust 1avolves the search for a second order dependence of current on potential, this having been
predcted by theoretical treatments The second can anse n cases where two electrons are transferred Under what conditions s at
possible to d the rate p for both fers? What cnitena ensure that the vanance in the data 1s explamned by only
one charge transfer step (1 ¢, the other 1s 100 fast to see)? The thurd probl h charge fers coupled by a
homogeneous chermcal step When the second charge transfer 1s more favored than the first, wnen docs 1t take place through a
homogeneous reaction route, and under what condit:ons <an this be detected? The exp I ples include the red: of
Zn(11) and the reduction of p-utrosophendl, both at mercury electrodes. The data are confounded to some degree by expenmental
artifacts, dom distnb of residuals may anse from these attifacts or from chorce of overly simple models

INTRODUCTION

Voltammetry comprises a suite of electrochem-
1cal techniques wherein the potential of an elec-
trode is controlled and the resulting current is
measured, Time is gencrally a parameter of the
experiment Pulse voltammetry comprises a subset
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of voltammetric techmques i which potential 1s
changed only mn a stepwise fashion (changes in
potential are instantaneous on the tume scale of
the experiment). The pulse mode has many ad-
vantages both experimentally and computattonally
when the experiment 15 carned out under the
real-time control of a digital computer surtable for
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hugh speed calculations This paper deals only
with pulse voltammetry. However, 1ts main points
apply to voltammetry in general

Voltammetry provides direct access to kinetic
mformation in that the measured quantity, cur-
rent, 1s wself the rate. Kinetic analysis of voltam-
metne data generally focuses on the potential de-
pendence of the current. The purpose of kinetic
analysis 15 generally two-fold, first to infer from
the rate data the mechanism by which chemical
transformation takes place, and second to obtain
values of the rate constaats or other parameters
which charactenize the system. Here this general
problem is introduced by describing a straightfor-
ward examplc, the sumple, first-order slow transfer
of an electron.

The phenomenon of potential dependence of
the rate 15 well-known and was tirst formulated
empincally in the Tafel equation {1]

n=a+blog: (1)

where 1 1s the overpotential (potenual mnus equi-
librium potential), ¢ 1s the steady-state current,
and a and b are empinical constants. The expen-
ments which gave nse to thus observation em-
ployed large concentrations of oxidized and re-
duced forms i contact with an mert electode, so
that the equilibnium potential was weli fixed, and
so that small excursions of potential from the
equihbrium value would not sigmiftcantly change
the concentrations near the electrode This mode
of Minetic measurements domunated the study of
electrochemucal kinetics for the next 50 years,

It was not until the development of polarogra-
phy by Heyrovshy in the '20s and '30s {2} that
<hanges i concentration near the electrode and
resulting diffusion were treated mathematically.
After World War 11, the confluence of mathemati-
cal expertise, the computational power offered by
computers, and improved electromcs permutted
dynamic expeniments in which potential could be
changed rapidly and automatically. An ap-
propriate formulation of the current ansing from
the reduction of reactant O to product R under
these experimental conditions 1s

1/nFA = & Co(0, 1) = k,Cr (0, 1) @
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where
k= k3 exp[~anf(E - E°")) 3
ky=k expl(1 —a)nf(E-E°")] @

and Co(0, 1), Cr(0, 1) are thc time-dependent
concentrations of the oxidized and reduced forms,
respectively, at the electrode surface, k0 s the
standard apparent heterogeneous charge transfer
rate constant, referred to the formal potential,
E*®’, for the reaction

O+ne"=2R (5)

a 1s the ‘charge transfer coefficient’, f=F/RT =
38.9 V71 at 25°C, £ 15 the electrode potential, 2
the current at an electrode of area A, and n the
number of electrons transferred (eq (5)) This
formulation 1gnores the effect of charge on the
electrode and corresponding charge distribution i
solutton. For an elementary process, n=1 In
general 1t ts found that even for more complicated
processes, €qs (2)-(4) descnibe the experimental
result, although the value of n in egs. (3) and (4)
may be less than that i eqs (2) and (5) (Elec-
trons transferred after the rate-determinmng step
do not contribute to 2 n egs (3) and (4).) A
complete description of a mechanism 1deally con-
sists only of elementary steps However here, for
convenience and generality, we retain the symbol
for n, and do not distinguish between the overall
value and that which applies to the rate-determin-
ng step.

The technique of normal pulse voltammetry
leads to a simple closed-form solution to the diffu-
ston equation under hincar, semunfinite conditions
with eqs (2)-(4) as a boundary condition. Thus
quasireversible charge transfer under normal pulse
voltammetric conditions provides a straightfor-
ward example of the types of questions which
anse m kinetic analyses

The current which flows in response to the
potential perturbation of normal pulse voltamme-
try for quasireversible charge transfer s given by

)

1) = 1,(1 + €) T '7V2AM? exp( Nt Jerfe( A2
p

(6)




W Onginal Research Paper

143

where

A=x(l+e)e® g
K= kg/D‘()h«)/zDg/z (3)
e=exp{nf(E- E{)} )
E{p=E® +(1/nf) In( Do/ D) (10)
xd=nFAD$/2C°“/(171)V2 (11)

Dy and Dy are the diffuston coeffictents of the
oxidized and reduced species (eq (5)), O and R,
respectively, the mmtial uniform concentration of
015 C§. that of R 1s zero, and ¢ 15 the time after
the potennal 1s apphied at which current 1s mea-
sured The quantity 1, 1s the “diffusion-controlled
wurrent . the maxumum current which can be ob-
tained under these conditions A typical result
confornung to eq. (6) 1s presented in Fig 1

Eq (6) provides a means to calculate the cur-
rent i(¢) at any potential and time, given the
values of 1, E{,;. a. kS, Do, and Dy Typically
1(1) can be measured, for various values of t, over
the potential range of interest. The objective 1s to
see whether the results conform to eq (6) and to
ot‘;lam the values of the hinetic parameters, « and
k

ar

The typical experimental procedure 1s as fol-
lows Fust note that as A= o0, eq (6) ap-
proaches

() =101 +¢) 7" 12)

and when this 1s true (1¢, k, and k, are large
comparison with the rate of diffusion), E=Ef,
when 1(1)/1,=1/2. Thus Ej , 1s measured 1n this
way using data from an expenment at tumes suffi-
ciently long that the kinetic effect 1s neghgible.

When this regime 1s expenimentally inaccessi-
ble, £, may be obtanable through measurement
of E°" (eq. (10)) This 1s done by prepanng a
solution contaming high concentrations of both
forms of the redox couple (O and R, eq. (5)) and
measuring the potential of an inert elecirode placed
therein Thus route also has problems, in that the
reduced form, R, may be unstable

When ¢ 1s small, that 1s, E < Ef ,, 1 attams its
hmiting value of 1, (eq (12)) Thus, by carrying
out the experiment at sufficiently negative poten-
tial, 1, 15 measured.

Depending on the value of na, the approach of
¢ to the value 1, may be very slow, and a shght
increase m ¢ with increasingly negative potential
may be confused with unwanted contnbutions to

CURRENT (uA)

-055 «105

POTENTIAL VS SCE (VOLTS)

-
~115

Fig, 1 Normal pulse voltammetnc reduction of 099 mAf Zn(11) in 1 0 M NaNO,, SMDE (small drop), i,=055, 1,=001s (0}

Expenmental points, (

) optimal theoretical cunve calcufated for £, = ~0971 V, a=023, log(xty/?) = -081
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the current from other processes. In the example
of Fig. 1, the current has not reached its limiting
value at the most extreme potential

The thurd step 1s to obtain the current as a
funcuon of ¢ and E over ranges of values for
whuch the Kinetic effect mantfests wself, Using the
data from these three steps, the quantity i(E, 0
+¢€]/14 15 computed for each experimental cur-
rent From eq (6),

(E, )1 +€]/1y=a"x exp(x?) erfe(x)
=f(x) (13)

where x =Ar'% Having thus obtamed values of
f(x), the function 1s inverted to obtain values of
Ar'72 and thus A. Companing egs. (3), (7), and (8),

ky=DE*\/(1 +¢) (14)

Measurement of 1, as a function of 7 or (@4
allows one to determime D, provided n and A4
are known Thus A, can be calculated The quan-
uty k,(E) is then plotted as a function of E to
obtain « from the slope according to eq. (7), and
kg as the value of k; at E=E*’. Note from eq
(10) that thus also requires the value of Dy, which
may be difficult to measure if R is unstable.

A plot of 5 vs log i is a “Tafel plot’ (cf eq
(1)), and the simlar plot of log 1 vs. £ 1s usually
gwven the same name. By extension, the plot of log
ky vs E 15 a ‘Tafel’ or ‘Tafel-hke’ plot. This
scheme for obtaming the potential dependence of
the rate thus has ansen naturally from the earliest
empircal observations,

DATA ANALYSIS

The measurement errors associated with this
procedure have been described 1n detasl {4). Even
without considering the expenimental details, 1t
should be apparent that this procedure and alt
other procedures which are stmilar requiring
normahzations and computation of k, using data
from different experiments are unsound. In par-
tcular, the result for « 15 very sensiive to the
value of Ey ;.

Consider the following charactenstics of the
functional form. First, ¢< 10~ for n(E - E )

-092 -100 -108 -116

£V
Fig 2 Semloganthmue plot of data of Fig 1 according to eg
(3) with vanous choices of E{;; (V) (0) —0971,(¢) -0981,
(© ~0966, (a) ~0961 These potentials are indicated by
arrows on the figure The range 01 <1/1;<09 15 also ind-
cated

< =120 mV Thus, as 1 approaches 14, eq (13)
becomes wdependent of ¢ Second, for Jarge x =
A f(x) (eq (13)) 1s msensive to AsY2. For
example, for x =2, df(x)/dx =0073 but for x
=10, df(x)/dx = 000097, In the range of large
X, small etrors mn 1, which cause only small errors
m f(x), result in large errors X, and thus i k.

Third, (1 + ¢) increases exponentially for E >
E{/2 and thus small errors in 7 at small 1 can
cause f(x) to be larger than its maximum value of
unity When this 15 a problem, the analysis 1s
always ‘improved® by choosing a more positive
value of £y ;. These pomts are illustrated 1n Fig.
2, which displays the data of Fig. 1 according to
the scheme presented here with four different val-
ues of Ef,, the optimal value, obtaned as de-
scnbed below, and both smaller and larger values
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For negative potentials of about —-1.06 V, ali of
the pomnts are the same, because € <1 Even for
the optimal value of £/ /2> the value of InfA /(1 +
)] deviates from the predicted Imearity for poten-
tials much more positive than Ey 5, because small
errors m Ey; or in ¢ are magnified by the large
values of ¢ used m eq (13). More positive values
of E{,; mcrease the range of linearity, and thus
appear to be ‘better’ values, Conventionally 1t is
felt that expenmental errors may donunate out-
stde of the range 01 < 1/1;<09, which 1s inds-
cated in Fag 2.

An alternative approach to the analysss of volt.
ammetne data which is statisucally sound has
been developed and descnbed in detail {51 To
explain this approach, for sumplicaty we use as an
example the kmetic problem just discussed. The
model yields a dimensionless current functron, ,
here (cf eq. (6))

Y= (1+¢) g2 exp(€r) erfe(Ar/?)
{15)

Examming egs. (15), (7), (8), and (9), the parame-
ters sought are 1dentified as o &, and Ef . The
expenmental currents 1(E, 1) are then analyzed
according to the fincar equation

((E, 1} = ay(a, x, E[,)+¢ (16)

by finding the optimal value (& R, E‘,’ /2) which
maximizes the correlation of ; with ¢ (or mimt-
mizes the complement of the correlation coeffie
clent, (1=r). It is assumed that experimental
ereors are normally distibuted with zero mean It
has been shown that this procedure 15 equivalent
to the method of maximum likelihood,

In addition, the confidence region for the quan-
uty (& 2, Ef /2) is determmed at a known leve] of
confidence. The confidence elipsord may be de-
scribed by the intervals I, I, gy, where, for
example, 1, is the suze of the ellipsoid in the «
dumension at k= §, Ef 2= E{,;. The quanuty 1,
has endpoints o’ and a”. The values o and oa”
are the values of a that Jead to a correlation
coefficient ry = ) = b(1 ~ 7 ) when the correlation
is maximized as a function of the other two
parameters, x and Ej,. The interval I, is not a
confidence interval for a; it 15 the size of the

confidence elhpsord along a line passing through
the optimum and paralel to the a-axis The value
of b is given asymptoucally by exp( X2 /my=(1~
Y/ A~r2) Whew r, =1, as 1 usually the case,

b= exp(x*/m) (17)

where m is the number of expertmental points and
x?2 15 the chi-squared statisuc for approprate level

of conftdence and three degrees of freedom.

THE COOL ALGORITHM

This method has been mmplemented by means
of an algonthm (called the COOL algorithm),
which mcorporates the modified simplex  al-
gorthm to search for the optimal values, and the
secant algonithm to calculate the ntervals of the
conftdence etipsord The important features of the
procedure m applications o electrochemical kinet-
1cs are as follows,

(1) The treatment 15 mdependent of ¥ any com-
putational technique may be used to calculate
any ¢ for any model for use with the COoOoL
algonithm,

(n) The data are not transformed or mantpulated
prior to analysis

(m1) No normalizauons are required: mn particular,
10 data from other experiments are required

(tv) Offset m the current scale does not mtroduce
bias.

(v) All of the data are used. There 15 no require-
ment that the experumenter truncate the data
at some pomnt,

(v1) Confidence regtons may be calculated

Of course, there are other examples of statisti-
cally reasonable approaches to this problem. They
are, however, remarkably sparse, considering the
considerable mathematical sophistication required
for any treatment of complex hmetic schemes
studied by more complex voltammetne tech-
maques. This general 15sue has been treated re-
cently by Rusling (6], From the point of view of
the electrochemist k focusing on the experiment,
the features which distinguish this approach from
those which are superfically comparable are the
followng, Fust, the COOL algorithm provides a
uniform treatment for all mechanisms and alf pulse
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voltammetnic expeniments. Second, the separation
of the linear and nonhrear parts of the problem
according to eq. (16) not only avoids irritating
expenmental problems (the electrode area need
not be known, for example), but s also.efficient.
Thus interesting problems can be solved in ‘real-
ume’, that 1s, tumes no longer than a few minutes
Thard, perhaps because the nonlinear problem 1s
dealt with directly rather than through quadratic
approximation near the optimum point, the apph-
cation s surpnsingly robust. The experimenter
nceds to provide only imtial estimates of the
parameters and the step sizes for the mtial sim-
plex. Even silly imtial guesses do not sigmficantly
stow the approach to the optimum, and there
seems to be no problem with false optima Thus 1t
1s a useful rather than a dangerous tool in the
hands of a nawve experimenter.

Deternunanion of  in complex cases

Before presenting applications to kmetic prob-
lems we describe briefly the techmiques employed
to obtam the dimensionless current, , for cases
more complicated than the simple example of eq
1s)

For any furst order system and experiments
with only stepwise changes in potential the dimen-
stonless current function can be expressed in the
form of an ntegral equation as

9 =00 -9 [[$G)/(1=9)""] 0
(1)

where 8 and ¢ are functions of ume. This 1s
solved numencally using a simple linear quadra-
t re formula to yield an expression of the form

m=1

b= (b0 0= T sl n 09
=1

where b, is the estimate of (1), b, is the estimate

of (1) at t=ut,/l, 1, 1s the tume over which

potential 1s held constant, / 1s the number of

subintervals employed by the quadrature in the

mterval t,, sj o2 = (7= 1%, and j=m—1+

1.

EXAMPLES OF QUESTIONS ARISING IN DATA ANAL-
YS$IS

We now turn to the discusston of three exam-
ples of questions which anse in the analysts of
kinetic data.

(1) For slow charge transfer, 1s the charge trans-
fer coefficient («) a function of potential?

(1) For cases in which t~o clectrons are trans-
ferred, 1s 1t necessary to consider both
charge-transfer rate processes in the model?

(wi) For two charge transfers coupled by cherical
reaction, under what conditions does the
chemucal cross reaction need to be consid-
ered?

We consider each of these questions in turn,
keeping 1 mund the double objective of elucidat-
g mech and mg the values of kinetic
parameters

Is the charge transfer coefficient (a) potential-de-
pendent?

Modern theories of adiabatic charge transfer
predict an explicit dependence of the rate on such
parameters as the energy of reorganization of the
molecule 1n gomg from the mtial state to an
excited state and from the excited state to the final
state These theones predict that the rate of charge
transfer should depend exponentially on a
quadratic function of potential. By exammation of
eq. (3) 1t can be seen that this 15 equivalent to
predicting that a depends hnearly on potential

By companng the theoretical treatment of
Marcas with the phenomenological treatment of
eqs (2)-(4) {7}, one obtains

a=1/2+ (nF/AN)(E- E°" - ;) (20)

m which A, 1s the potential-tndependent standard
free energy of activation and ¢, 15 the potential
drop across the diffuse charge layer m the electro-
lyte solution near the clectrode. The expennmental
objective, then, is to test the proposition that for
an appropnately constramned set of reactions the
quantity a of eqs. (3) and (4) has the form given 1n
€q. (20). It should be explicitly noted that eq. (2)
does not display actiity coefficients. Because

U
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charge transfer ily involves ge m net
charge, the activity coefficients of reactant, prod-
uct, and transition state will in general be differ-
ent Provided that they are potential independent,
activity considerations should not confound ef-
forts to test relation (20) by the analysis of cur-
rent-potential data

Consider first the graphical method of analysis
based on eq (6), which assumes that the charge
transfer coefficient 15 independent of potential. If
mstead « has the form of eq. (20), then a plot of
In(k,) vs. E according to eq (3) will be curved. A
common way of using this method to test eq. (20)
15 to define a by

a=—(1/nf) d[ln(k,(E))] dE (21)

anf,
V-I

Then the slope of the curve In(k/(E)) vs. E 1s
determined numerncally to give values of a(E),
which are then plotted agamst E to test eq (20)
and obtamn the value of the coefficient of poten-
tial,

The values of a obtamned pomt by pont are
obtained from the curves of Fig. 2 according to eq.
(21) and plotted agamnst potential as shown in Fig
3. Clearly the result for Ey,, = —0.961 Vs “best’,
that 1s, 1t 1s linear over the range 0.1 <1/1,<0.9.
By choice of range in each case, a slope, 3(anf )/
9E, can be determined. For the hnes in Fig 3, the
slopes are 261, 96, and 21 V=2 for Ef,=
—0.961, —0.971, and —0.981 V, respectively. A
predicted value 1 this case 15 70 V=2 (8] which,
considering the uncertamties mvolved, agrees rea-
sonably well with the value of 26 V™2 Thus, a

-E.V

Fig. " Plot of « values obtained from Fig 2 by means of ¢q (7) agamst potential to test eq (20). Symbols as Fig. 2, range

0.1 <i/i;<09 shown, and Ey,; values indicated by atrows.
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value of E{,, which s in error on the positive side
(for a reduction) not only improves the linearity of
the result but also yields a spurious potential
dependence of the charge transfer coefficient.

The literature on this question is confused.
There are papers descnibing charge transfer coeffi-
cients which are potential-dependent. Some of
these, which report results in accord with theory,
have been refuted. These potenttal dependencies
have been inferred from data by methods similar
to those descnibed above, or by methods some-
what more sophisticated but contaiming the same
fundamental flaws We have examined this ques-
tton in detail using the COOL algorithm for analy-
sis of data [9) Two models were employed, one
equivalent conceptually to that descnibed by eq
(15) (but incorporating factors to take into account
the mterfacial charge distnbution), thus having
three parameters, and an alternative one with the
formulation

a=a0+a,n[(E—E{/2) (21)

as suggested by eq. (20). Typical fits according to
the four-parameter model yielded values of (1 —
r,,) and S/N no better than those of the three-
parameter model, with a typical value of ay=
0.0002 £ 0.0002 (re. I,=0004). (Here S 1s the
slope, a, of eq. (16) and N 1s the root mean
square deviation of the expenimental pomnts from
the optimal theoretical curve.) The predicted value
of a, 15 0013, or ayn*f?=79 {8]. We conclude
that a does not depend on potenual, the expen-
mental evidence provided by these authors
notwithstanding,

The power of the COOL algonthm m this
analysis rests m part on the identification of Ey,,
as a parameter. The resilience of the analysis to
changes in the laboratory reference potential 1s
illustrated in Fig 4, which presents results for four
nominally identical expeniments Rather than just
presenting the confidence mtervals, a more exten-
sive calculation was employed, to compute the
boundary of the confidence region m each of the
three planes of the parameter space. The deviation
of the optimal value of E,, for the curve of panel

1200, "“ ’_’_H—-—'v‘)""
Vel
LN
! \ A\\
A AIN
1100 AN

\‘\ J

16
[ F Y ¥ - B

Fiz 4 Norma! pulse voltammogram for 1 maf Za(ll) in 0 3 Af KNO,, SMDE, medium drop size, potentials vs, saturatea catomel

1 de, Panel 13 Exp
regrons at 95%; (==} data of panel 13; (-~

1 points (0), best-fitting theoreucal cunve ¢

) and residuals (). Panels 14, 15, 16° confidence
) { =t=) (- =+ =+ )are for nomnally identical expennments Optimal values

(+) The axes are: (13) (gAY vs E(V), (14) k%107 cm/s) vs. E{,2 (V)i (15) a vs. E{ 5(V): (16) k°(107 3 em/s) vs a
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Fig. 6 Normal puls¢ voltammogram analyzed with independent value of E{; Panels 9-12 are equivalent to panels 5-8 of Fig 5,
respectively, with the excepion that Ef ; 15 consuaned to be 4 mV negative with regard to the optimal value found in Fig 4
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13 (of Fig. 4) is a systemic error caused by a
change in the laboratory reference potential. This
can be seen to have no effect on either the optimal
values of the other parameters or the size and
shape of the confidence regions.

The conventional procedure employs an inde~
pendently measured value of Ej . (Ej2),.- The
effects of errors in this value on the analysis can

be tested by analyzing the data of Fig. 4 by means
of the COOL algorithm, but fixing the value of
Ej .- In Fig. 4 the outlying value of Ej > is about
4 mV from the mzan value. Thus we analyze the
data for one of the nominally identical experi-
ments of Fig 4, with the value of £] fixed at
(E{2)m= Ej 2 +0.00% (V). where Ey; is the op-
timal value found in the optimization presented in

12f
1@

i
108
!
i
H
o8}

o6t

®)

02

A,

‘
Vrppsunr X 100
o
S

-04

o l\m”“v' e

al nnl:l.'ii'qj

!

-085 -095 -105 ~115 ~125 -13!

E, V VS SSCE

Fig 7 (a) Normal pulse voltammogram calculated for two-step mechamism with Do =66 X 1078 co® ™%, Dg=16x107% con®
7L E® = ~0991V, A3 =35x10 " ems™!, kS =T71X 10 2ems ™!, oy = a; = 040 (O), optimal theoretical curve for one-step

mechanism, Ef,;= —03%66 V, an=0404, k=351 x10>cm ™" (

the cutrent calculated for the two-st

), (b) residuals, ¥, = (¥n, = Via)/Vapr Bhere v, 18

;] and ¢, the current for the optimal one-step mechanism 1, =5 ms

- ama—.
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Fig. 4. The value is fixed by setting the initial step
size 10 zero. The result is shown in Fig. 5. The
optimal theoretical curve (calculated from eq. (16)
using (&. &, (Ej,2).)) now displays noticible sys-
tematic variation from the experimental result (Fig.
5. panel 5). In addition. the confidence regions
about (&. £. (E{»),,) are substantially unsymmet-
rical. Similar results are obtained when Ej, is
fixed at the value (E,,-)_=E,,‘—0003 V), as

shown in Fig. 6. The change in opumal value of
kS resulting from change in Ej > is expected. for
L“ is just the rate constant at E=E®" (cf. egs.
(3). (3), and (10)). More striking is the large change
in a. This demonstrates that Ej; is properly a
parameter of the experiment, and thus fixing E; 2
at some value determined in another experiment
precludes the possibility of accurate kinetic analy-
sis.
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Is it necessary to consider more than one charge
transfer?

In the case discussed above [9] a second issue
involves the detailed mechanism of charge transfer
when n=2. Is it necessary in that case to use the
model incorporating two successive charge trans-
fers and thus six rate parameters [4]? Or, inverting
the question, can anything be learned about the
faster of the iwo steps by this type of analysis?
The issue here is more complex. for the more
claborate mechanism can be expected to exhibit
non-monotonic changes in the shape of the re-
sponse, and thus to produce a non-random pat-
tern of residuals However, systematic errors in
the experiments can have the same effect. Thus
the non-random distnbution of residuals cannot
be attnbuted automatically to sigmficant rather
than adventitious or trivial failures of the model.
A further problem arises when the model is availa-
ble only numencally (cf. eq. (19)). The interpreta-
tron of humps or bumps in the response as ansing
from specific features of mechanism (the phreno-
Togic school of kinetics), always risky, 1s foolhardy

analyzing the data of Fig. 8 according to the
appropriate model for two successive slow elec-
tron transfers,

Is it necessary to consider more than one homoge-
neous reaction?

A much-studied mechanmism s the so-called
ECE sequence

O,+ne=R, E (22)
R;50, (23)
O,+ne=R, EY (24)

in which the heterogencous charge transfers are
Iinked by an intermediate homogeneous reaction,
here taken to be iureverstble. When EP’ > E°’,
reaction (24) 1s more favored than (22), and so the
two reactions occur together at the potential for
reduction of O,. The reason for interest 1n this
scheme is 1ts potenuial catalytic significance. Many
organic compounds, especially in aqueous solu-
tion, display the response expected for this sort of

in this case, as munor changes in the values of
parameters can produce quite striking changes mn
the appearance of the response

A typical dlustration is given in Figs 7 and 8.
Fig 7 displays the analysis of a calculated voltam-
mogram The vol gram was calculated from
five parameters for two, one-electron transfers.
Both rate constants are referred to the standard
potential for the overall two-clectron process The
calculated voltammogram was then analyzed
according to a model for a single slow electron
transfer with » = 2 (three parameters). The obwi-
ous pattern in the residuals can be compared with
those of the experimental example of Fig. 8 The
expenmental conditions of Fig § are nearly iden-
tical to those which produced the data on which
the theoretical calculation of Fig 7 (5 parameters)
is bascd In the expenment, noise and systematic
experimental astifacts obscure the interpretation.
The pragmatic conclusion 1s that the more simple
model explains adequately the vamance in the
data This leaves open the question of whether the
data contains information about the faster elec-
tron transfer step This nught be obtamed by

However, when Ey’ > E;”’, the ho-
mogeneous freaction

O, + (ny/m )R, & Oy + (ny/m )R, (25)

1s highly favored and provides an alternative route
to that of eq (24) for the transfer of electrons to
R,. The questions then anse, under what condi-
tions is reaction (24) mmportant m the overall
process, and when 1t 1s important, can 1t be de-
tected? Or to phrase the question somewhat differ-
ently, under what conditrons does the model con-
sisting of reactions (22)-(24) explamn adequately
the response?

A classical example 1s the reduction of p-mtro-
sopheno! {10] Expertmental results for p-mtro-
sophenol are presented in Fig 9 together with the
optimal theoretical curves for the simple model
compristng eqs. (22)-(24). To the eye 1t would
appear that the correspondence 1s adequate For
these data r,, = 0.998, and typical values of I, arc
0.2-1 s7', depending on the expenimental condi-
tions. There 1s considerable advantage i using
this method to determine values of %, for the
addition of the second order reaction, eq. (25), to
the model complicates the mathematical formula-
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tion enormously. Are the optimal values of A and
the assocrated confidence regions reliable, even if
the model 1s ‘wrong’ 1n that it does not incorpo-
rate eq (25)?

Unfortunately there does not appear to be a
general answer to this question, even if it 1s re-
stricted to problems mvolving only two parame-
ters For the case of Fig 9 there 1s reason to
believe on empinical grounds that this question
has an affirmative answer [11]. Thus 1s an unsatis-
factory concluston, in that it rehies on an intuitive
argument based on example, rather than on objec-
tive critena. The present statistical approach deals
only with the description of phenomena, and thus
cannot deal directly with questions of this type. It
could be a useful tool, however, for computational
mvestigations of this and related questions. Al-
though the results could only serve as a guide,
computation 1s so much less expensive than ex-
perimentation that this could well be the most

efficient way to proceed with interpretation of
kinetic measurements

CONCLUDING REMARKS

These three examples raise 1ssues commonly
addressed ad hoc and qualitatvely in electrochem-
ical kmetic studies The optumzation technique
presented here provides a nmgorous evaluation of
the correspondence between model and data in
near-real-ime. This may be used to discimmate
between alternative models and to examune the
power of the data to yield mechamstic informa-
tion,

In favorable cases, the algonthm may be used
to 1dentify and quantify a munor feature of the
mechanism. Equally important, and more difficult
to demonstrate convincingly, this approach may
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be used to show the absence of an effect Fmally,
after suitable computational investigation of van-
ous types of models, 1t may permut one to treat
rather complex cases using the most simple model
which incorporates the feature about which infor-
maton is sought and which yields an acceptable
signal-to-nosse ratio (S/N).
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Abstract

Sinpson, DG . Guo, S, Suks, J, Bietz, J A, Hucbner and F, Nelsen, T, 1991 Relating chromatogeaphic data to measurements of
wheat quality case studics in dtmension reduction Chemometrics and Intelligent Laboratory Systems, 10 155-167

Fractionaung wheat protems by reversed phase high-performancy hiquid chromatography yields extremely complex chromato-
guams The data they contuin may relate to many charactensties of milled wheat such as the volume of o loal of bread or the texture
of the dough produced. but such relationships dare not readily apparent from the raw data We report ous expenences with two
dimension reducuon techmiyues that are widely cited in the chemometiies Iitesature prinapal component dnalysis and partial least
squares {PLS) Each of these methods replaces the ungingl observation vectors by weighted avaages of then components, where the
weights are selected decording 1o a duta dependent watesion The analysis proceeds by operdating on these werghted averages 1athes
than the onginal, high-dimensional data In order to eluadate properties of sigmficance tests and other inferences, we focus un the
spectal «ase where only one factor s selected We show how to use simulation to compute the appropriate sigmficance fevel of the
regression wn the PLS scores The common techmique of using the F distnbution to compute sigmificance levels for PLS regression

can be an 1y liberal p dure The P of PLS weights requires considerable care
INTRODUCTION temns from samples of wheat, there 1s considerable
mterest 1in developing the statistical technology for
With the advent of modern high-performance relating these chromatographie {ingerprints to the

lIiquid chromatography (HPLC) for analyzing pro- attnbutes of mulled wheat {1} Viewing a wheat

0169-7439/91/503 50 © 1991 - Elsevier Science Publishers BV
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sample as the basic experimental unit, 1t is typical
that the number of independent observations
(wheat samples) 1s small, but the number of char-
actenistics available for study on cach observation
1s large. For mstance, there appears to be a multi-
tude of active sites on the chromatogram that
mght potentially be included in a model for pre-
dicung vanous attnbutes of the milled wheat.
Standard statistical methodology, e.g. multiple Jin-
ear regression, cannot be apphied directly to the
raw data because the nominal dimension, that is,
the number of measurements on each experimen-
tal unit, exceeds the number of mdependent ob-
servations, leading to ill-posed estimation prob-
lems.

Dimension-reduction techniques are based on
the premisc that much of the mformation col-
lected on each observation 1s redundant, and that
some lower-dimensional transformations of the
data contain most of the mformation. If such
transformations can be discovered, then one can
m principle use standard statistical methodology
on the constructed lower-dimensional data, Two
dimension-reduction methods that are widely cited
tn the chemometrics literature are principal com-
ponent analysts [2] and partial least squares (PLS)
3] After descnibing these methods brefly, we
tllustrate their use on typical wheat protemn chro-
matographic data, and offer some prehmmary ob-
servations on the viability of these methods for
mvestigatimg the relationships between HPLC pat-
terns and attnbutes of mulled wheat,

In principal component regression the predictor
vanables are reduced to a smaller number of pro-
Jections that account for most of ther vanation
[2) Because the projections are selected indepen-
dently of the response vanable, this procedure has
the ad ge that cl i ion theory may
be apphed to test for sigmficance, to compute
prediction intervals, and so on On the other hand,
there 1s no guarantee that the principal component
projections contamn adequate information about
the relation between the predictor vanables and
the response. PLS has been proposed as a method
for selecting projections that are more informative
about the relationships between two sets of vari-
ables. It makes usc of the covariances to select

projections that account for the joint vanation mn
the two sets. PLS regression, i particular, selects
one-dunenstonal projections of the predictor varn-
ables that have large covanrance with the response
[4,5]. Because the projections depend on the re-
sponse as well as the predictor varables, classical
regression theory does not strictly apply. For -
stance, we demonstrate that companng the PLS F
test for the regression to the F distribution can be
an extremely liberal procedure.

Both the pnncipal component projections and
the PLS projections are affected by the choice of
scales for the different components of the raw
data. Changing the scales differentially can drasti-
cally change the nature of the projections selected
For this reason many authors suggest standardiz-
g the raw data componentwise prior to further
analysis. In our examples we center but do not
standardize, because the HPLC measurements at
different sites on the chromatogram are mn the
same umt, and a change of umts would affect
them all simultaneously Prancipal component and
PLS factors are unaffected by common scale
transformations of the raw components of the
data, e g. the results would be the same 1f we chose
to express absorbance 1 different units Applying
a nonlinear transformatton (e g. a loganthm) does
affect the results, and the selection of an ap-
propnate transformation 1s an issue for further
rescarch. Such preprocessing of the data 1s often
an important ingredient to the success of a dimen-
ston-reduction techmque [6).

There arc different ersions of PLS and differ-
ent recommendations about how to choose the
number of projections for regression {7} Our
primary interest 1s 1n how to interpret the projec-
tions and mn how to make nferences. For this
reason we sidestep the other tssues and focus on
the special case where only one PLS projection of
the predictor vanables ts to be selected. In our
regression example this scems approprate. Al
though cach obscrvation has many components,
there are few observations, and onc explanatory
vanable ought to be suffictent. The mmportant
issue of bias due to vanable selection 1s clearly of
broader scope, and our case study may be viewed
as a telling example.

VD - R —
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PRINCIPAL COMPONENTS

Princtpal component analysis is a method of
investigating a multuvariate dataset by looking at
orthogonal one-dimensional projections [2). By
multivariate we mean that each experimental unit
has a number of measurements associated with it,
For mstance, a given sample of wheat mught be
subjected to several different assessment of qual-
ity, i which case the different quality measure-
ments constitute different components of the mul-
tvariate quality vector for that sample. Sinmlarly,
the HPLC pattern nught consist of absorbance at
50 equally spaced pomts on the time scale, in
which case the 50 measurements comprise a 50-di-
mensivnal vector assouated with the given wheat
sample. The usual goal i pnncpal component
analysis s to replace the large number of compo-
nents on the onginal scale with a small number of
new components conststing of the orthogonal pro-
jections that account for the largest portion of the
vanation in the dataset at hand.

A direction vector 1s a vector of umit length,
where the length of an arbutrary vector x =
(Xps.- < x,) 15 given by

flxll=Vx'x = Jxf+ oo s}

If §lx]j+ 0, then u=x/| x| 1s the direction vee-
tor for x. If y 1s arother vector with the same
number of components, then its projection on x s
P natoo Hpx, -
=T I y
The number y’w 15 the component of y n the
direcion of u, For example, suppose u 1s the
direction vector (1,0, 0,0,...,0)". Then p'u=y,
the first component of y.

A key 1dea mn dimension-reduction 1s the pro-
Jection of a dataset, Suppose a dataset conststs of
n veclors xy,..., x, each having p components.

4 .
x=(xg.%,),  isl oun

Projecting each of these vectors on a direction
vector 1 yields a new dataset f cne-dimensional
observations, the components of x,, ., x, in the
direction of u:

X{Myeun, Xo8

Given a set of numbers {x;, Xa,...,X,}, @
common measure of varnation 1s the sample var-
ance about the mean:

(n=3"+ - +(x,~%)’

V(xpaeers X)) =

n
where
X+ o dx
I n

n

The first principal component 1s obtained by find-
ing the direction u, such that the projection of the
dataset has maximal sample variance, that 1s,

V{xjuy, .., xlu) = pmaxl V(xju. . xu)
hual =

The second prinuipal component 1s obtained by
maximizing the vanance of the projections on
directions orthogonal to #,. In general, the kth
principal component maximuzes the variance of
the projections on directions orthogonal to
{uy,.ou o)

In using this construction for dimension-reduc-
tion the hope 1s that most of the relevant vanation
1s accounted for by the first few principal compo-
nents, For wmstance, 1t might be that most of the
variation m a set of chromatograms 1s accounted
for by a few peaks.

A number of software pachages and programs
have routines for prncipal components analysis
mcluding BMDP, Mitab, SAS, and Unscram-
bler In additton, programs that perform the et-
genvalue decompositions needed to get the prme.
aipal components are widely available, ¢.g., LIN-
PACK and S.

PLS PROJECTIONS

Principal component analysts attempts to pro-
duce a small number of directtons that capture
most of the vamation m a single set of vector
observations An alternative dimenston-reduction
has been proposed 1n the chemometrnies hterature
when the goal 15 to relate two sets of vectors,
Given pairs of veetors (xy, 3)i...u(X, 3,) the
1dea 15 to find directions #; and v, such that the
projections of x,, ., x, on u; and the projections
of yy,..., 3, On v, have large comaident vanation,




158

Ch and Intell Lab. y Systems B

This 15 the basis of the PLS algonthm [3], which
uses the projecttons on these directions as the
tnput vanables for least-squares regresston.

Specifically, for pairs of numbers (X, »),..-»
(x,. ¥,) the sample covaniance 1s given by

il(x,-zxy,—;)

o
Clxppenns X3 Fpo vos o) = =

and provides a measure of the extent to which the
x and ) values tend to vary together. PLS uses
the covanance as a criterion for selecting the
projection directions #, and v,.

, P P
C(x{yyeney Xotys FiOyaen.s Bi0))

= max max C(xju,...,xu, y{v,..., yv)
Nuij=1 o =1

As in principal component analysis, one can sterate
the procedure and select additional direction vec-
tors that maximize the covanance m directions
orthogonal to previously selected projections. PLS
has almost invanably been descnbed 1 algonth-
muc form, but Frank [4] and Hoskuldsson (5} have
pointed out that the algonthm selects covartance
maxmuzing directions.

PLS provides a simultancous dimenston-reduc-
tion for x and y. For the special case with either x
or y one-dimensionat the solutron can be wntten
down explicitly Suppose y, =y, a scalar, for 1=
1,..., n. Then the solution 1s given by

é()',-)")(xrf)

Uy =
E (= 7)x - %)
k=1

, =1

where ¥ 1s the vector of componentwise sample
means for x;, ., x,. In this case u; may be recog-
nized as the direction of the vector of slopes from
the least-squares regression of x on y. In general
the PLS algorithm s easily programmed. It has
been implemented 1n the program Unscrambler,
which 15 available for IBM-PC compatibles. We
have programmed PLS regression in $ and FOR-
TRAN.

PLS bears a resemblance to canonucal correla-
ton analysis (CCA), i which projections of

Xy, o3 X, and yy, .., 3, are selected to maximize
correlation [8]. The CCA directions are the ones
with the strongest hnear association for the data at
hand, whereas the PLS directions have the highest
comcident vanation, Unfortunately, CCA s 1ll-
posed in the present seting where the nonunal
dimenston of the data exceeds the number of
independent observations. One can achieve perfect
sample correlattion by weighting on any n—1
linearly mndependent columns of the data matnx.

REGRESSION ON CONSTRUCTED COMPONENTS

Consider the case where y has only one compo-
nent, whereas x 1s of hugh dimenston. This 1s the
case 1n the examples below, where y 15 a particu-
lar attribute of milled wheat and x 1s the HPLC
determination of protem composition Recall that
the regression of y on x isll-posed 1f the number
of components of x exceeds the number of ob-
servations PLS attempts to circumvent this prob-
lem by regressing y on the linear combinations of
x selected according to the maximum covarnance
cntenion. Sundarly, principal component regres-
s1on mvolves regressing y on the linear combina-
tions of x selected by principal component analy-
s1s, In each case one uses the constructed vartables
zy=x"uy, 2,=x"u,, and so on as the regression
vanables for predicting y. In the case of principal
components the ordinary theory of muluple linear
regression can be used to compute standard errors
and prediction mtervals, because no mformation
about y was used m the construction of zy, 25,
etc. In the case of PLS the usual theory is mnap-
propriate, because of the dependence of the con-
structed 2, z,, .. on y. Further discussion of this
pomt 1s gven below. It 1s clear that ordinary
principal component regression can fail if the lin-
car combnauons of x with the largest vanability
have httle relation to y. PLS 1s an attempt to
avoid this pitfal! by selecting hnear combinations
that vary together with y.

A CLASSIFICATION EXAMPLE

The first example 1s a dataset consisting of
HPLC runs of 43 samples of durum wheat. There

-
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Fig. 1 Chromatograms for 43 samples of Durum wheat (A) Group 42, (B) group 45

are two groups labeled ‘42’ and ‘45’ depending on
which of two protens 1s present at a certain locus
on the chromosome, as determined by electro-
phoresis It has been found that the presence of
protein ‘42’ indicates a vanety with weak pasta
quality, whereas protetn ‘45’ indicates strong
variety. Thas example offers a test case for whether
the dimenston-reduction techmques can ‘discover’
this relationship, The expenmental technique for
the HPLC 1s descnibed 1n ref. 1.

Figs. 1A and B show the chromatograms (ab-
sorbance versus time) for the group 42 and group
45 samples. Each chromatogram contamns 330
cqually spaced Measurements over the range 5-60
mun. The most strking difference 1s that the group
42 samples have a sharp peak at 49 mun that 1s
absent {rom the group 45 samples. Conversely,
group 45 has a large peah at 44 mun that 1s absent
in group 42, Presumably this difference in HPLC
results for the two groups is a reflection of the two
proteins tdentified by electrophorests, Burnouf and
Bietz {1} cited it as evidence that HPLC could be
used to rdentify strong and weak vaneties. There
1s a nunor peak evident at 18 min for group 45 but

not for group 42. This peak was present only in
five analyses of one vanety (Langdon), so its
appearance i group 45 seems comncidental,

As the difference between the two groups 1s
obvious in Fig 1, any reasonable procedure ought
to be able to recover it. We employed composite
classification rules m which we first selected one
or two orthogonal weight vectors by principal
components or PLS, and then applied Fisher's
hinear discminant rule {9] to the scores obtamned
by projecting the data on the weight vectors, The
effect of this composite rule 1s to select a single
direction vector, say »w, that 1s a linear combina-
tion of the onginal direction vectors selected by
prinaipal component analysis or PLS The com-
posite discriminant rule 15 equivalent to assigning
a candidate chromatogram to the group whose
mean projection on w 1s closest to 1ts own,

Fig. 2A shows the first two cigenvectors from
principal component analysis. Fig. 2B shows the
first PLS weighting vector and the weighted aver-
age of the first two principal components selected
by the two-dimensional PC linear discrinunant,
The components of a weight vector u =
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Fig 2 Weght vectors for centered chromatograms of Durum wheat samples (A) Tirst two eigenvectors from PCA, (B) PLS

and lincar

(tge. .o U335)" give the weights for the time-ordered
sites on the chromatogram i the constructed vari-
ables

2, = X[ U= Xy b UyXy b b Uy Xy

As described above, the pnincpal component
weights do not use the dasstfication information,
but stmply give the direction of the most vanable
projection of he chromatograms. On the other
hand the PLS weights give the projection direction
having the largest covarrance with the group labels,
coded, for instance, as 0s and 1s (If there were
more than two groups we would have to itroduce
a vector of biary vanables for group labehng.) It
can be shown that if y 1s binary the PLS weight
vector 1s stmply the direcuion of the difference
between the componentwise averages for the two
groups, in the present case, the difference between
the mean chromatograms for the two groups.

The first pnnapal component weights in Fig,
2A appear to confound the two peaks noted above
with several other sites on the chromatogram. The
second component appears to cancel out most of
the other sites, allowing us to recover the dif-

based on first two principal components

ference between the two mamn peaks of mterest
with a bivanate linear discimmnant It s clear
from Fig 2B that the PLS factor 1s weighting
prmanly on the difference between the two major
peaks noted previously. The weighting vector that
results from applying the bivaniate hinear discrimi-
nant to the first two principal components 1s su-
lar to the PLS weighting vector except that the
former gives more weight to ghadins eluting be-
yond 50 rmn.

Fig 3 1s an ndicauon of the effectiveness of
the constructed classification vanables The verti-
cal axis 1s the group label. The horizontal axis 1s
the value of the score, z, = x,u, for cach of the 43
samples. In cach plot the vertical line 1s the cutoff
value for the lincar discrimant rule, which 1s given
by (3, +Z;)/2. where Z, and Z; are the mean
scores for the two groups. The first principal com-
ponent scores, shown i Fig, 3B, are not very
effecive for classifying the two groups. Adding
the second component reduces the error date
dramatcally, The PLS scores, shown m Fig 3C,
provide a complete separation of the two groups
The apparent error rates and leave-one-out cross-

[



B Onginal Research Paper

161

validation (CV) esumates of the error rates [10]
are as foliows.

Method Apparent  CV
efror error
rate rate

Pancipal component analysis (I) 12743 13743

Principal component analysis (11) 1/43 2/43

PLS 0/43 1/43

The apparent error rate 1s known to be optimustic,
the CV esumate 1s generally considered to be more
rehable.

When only one PLS projection 1s selected,
applying the Imear discriminant rule to the PLS
scores 1s equivalent to using a rule that assigns a
new observation to the group whose mean 1s closest
mn Euchidean norm {11}, that 1s, 1t assigns a variety
with chromatogram x = (xy...., x,)" to the group
with mean vector X, for which || x — X || 15 small-
est This procedure, known as Euchdean distance
classificanon [12,13), has an obvious generaliza-
tion to several groups

A PCA(l) Classification

The PLS classification 1s hughly effectave in this
example, and 1t 1dentifies the gliadin peaks associ-
ated with pasta quahty. Classification by PCA can
achieve nearly the same results but 1t requires two
components and a bivaniate hnear discimmant, so
1t takes a bit more ¢ffort. An alternative principal
component method 1s to use SIMCA, which takes
the groupmng into account by finding separate
principal component projections for the different
groups in the training data {14] It s not clear that
there 1s much to gam by using more complex
methods mn the present example In other exam-
ples, eg. when there 1s doubt that all of the
observations fall in known groups, other methods
mught well yield supertor results.

A REGRESSION EXAMPLE
The second example concerns a dataset con-

tamnng measurements on twelve varieties of hard
red spring wheat. For each vaniety we have HPLC

8 PCA(ll) Classification
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Classified 42 Classsfied 45

Group

42

s, P X CUE TS

Group

45

Cam T T=aCern

Classified 42 | Classified 45

N LU R T X )

-5 0 5 10 15 20 25 30
Score (thousands}

¢ PLS Classification

45

Classified 42 Classified 45
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] .

10 5 0 5 10 15
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"-15 0 5 0 5 10 15
Score (thousands)

Fig 3 Linear discnnunant classification of Durum wheat samples using (A) furst pnncipal component, (B) first two principat

components, and (C) first paruial least-squares projection
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results of protemns extracted with 80% ethanol. In
addition, a number of different kinds of measure-
ments were made of the physical properties of the
gram, 1ts milling properues, and its nmixmg and
baking properties as described by Nolte et al. [15].
We selected three for detailed study. (1) loaf
volume, the volume of a baked loaf of bread from
a given amount of flour, (u1) mix time, the amount
of muxing required for the dough to achieve a
certain consistency, and (1) percentage wheat ash,
a measure of the muneral content Loaf volume
and mix tume were selected because they are known
10 be related to the protemns of wheat. Ash was

selected as a negative control in our data analysis
expenment, since it 1s a vanable thought to be
unrelated to the protein composition,

Fig 4A shows the chromatograms for the twelve
varieties. Each chromatogram contains 514 mea-
surements at the rate of 12 per minute starting at
5 mun For the purpose of relating protein content
to the various attributes an important 1ssue is the
variability at the different sites, which can be seen
more cleatly from the mean-centered chromato-
grams in Fig. 4B. For instance, the raw chromato-
grams in Fig. 4A have a strong peak around 26
min that shows very hittle vanation across samples

A Raw Chromatograms
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Fig. 4 (A) Chromatograms for twelve samples of wheat grown in Mesa, AZ, (B) mean-centered chromatograms, (C) first two

aigenvectors from PCA
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and appears only as a small bump m Fig 4B.

8

e Y0 Centered chromatograms were computed as fol-
g L o7 D83 lows:
gg \,\ 06 S 1. Sompgte _!hc vector of componentwise means
B8{/ . ba 2 X' = (X, X3,..., X14) where X, 15 the mean of
bt \.\.\ ;f, the twelve absorbance measurements for the
g ~e. P28 Jth time point.

Ho 8 2 Subtract the components of ¥ from the corre-

123456789101 sponding components of each of the twelve
Component .
tndividual chromatographs.
Fig $. Standard deviations (solid line) and cumulative propor-
trons of vanance (dashed hine) for pancipal components wath
nonzero eigenvalues

A PLS Weights for Ash
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F1g 6 Weight vectors for centered chromatograms of twelve wheat samples. (A} PL3 weights for ash (B) PLS weights for mix time,
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In some instances there may be unusual chro-
matograms that have a large effect on the mean
centering. In such cases it is useful to plot
median-centered chromatograms for comparison.

The first two components from principal com-
ponent analysis are shown in Fig. 4C. The largest
source of varation is a peak or pair of peaks
cluting at 27-28 min. The first component is
essenually a difference across this region of the
chromatogram. The second component has contri-
butions from many sites, with no apparent domi-
nant contnbutor. Three or four components are
required to account for the bulk of the variation in
the chromatograms. Fig. 5 shows the standard
deviations (solid line) and cumulative proportions
of total variance (dashed line) for the principal
components

A Ashversus PLS Score

We next carried out the PLS computations to
relate ash, mix time and loaf volume to the HPLC
profiles. Although one can treat linear combina-
tions of the three quality vanables using PLS, we
treated them one at a time because we wished to
compare the predictability of these three attributes
using the different methods. Fig. 6a-c show the
first PLS weight vectors for ash, mix time and loaf
ol The magnitudes of the weights indicate
the relative importance of the different sites on the
chromatogram according to the criterion used 10
select the projection.

We were initially surprised at Fig. 6A for ash,
which seemed to indicate that protcins eluting ai
27-28 min were important for predicung ash.
However, an explanation can be found by com-
panson with the first principal component in Fig.

B Mux Time versus PLS Score QC Loa! Volume versus PLS Score
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Fig 7 Scatter plots for response vanables versus PLS scores (A-C) and PC scores (D-F)
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4C. which is quite similar. Recall that the PLS
factor is the direction with the largest covariance
with ash. It is plausible thas ash varies as the total
protein conltent varies (more protein means less
ash). Variation in total protein content would in
tumn be connecied with the vadation in the prin-
cipal comp Itsoh that peaks in the
mdicated region show subs(anually greater varna-
tion that the other sites, so these show up in both
the PLS factor for ash and the principal compo-
nent. Contrary to the impression con\‘c)ed by Fig.
6A. it ts doubtful that the p Juting at
27-28 min have any musm\‘e relationship with
ash content. Instead. it is quite likely that they
receive the highest weights simply because they
account for the largest portion of the variability in
the chromatograms and, consequently, the varia-
tion 1n total protein content.

Fig. 7A-C arc scatter plots of the three re-
sponse variables ash, mix time and loaf volume
rversus their respective PLS scores. Fig. 7D-F show
the same resp vanables plotted ag the
principal component scores. The least-squares lines
for regression on PLS and Principal components
analysis scores are included as well. All of the PLS
scatter plots suggest some positive relationship:
however, there 1s a hidden bias in these plots
because cach PLS directicn was selected to have a

1 hip with the corresponding response. One
mamifestation of this bras 15 inflation of the false
positines rate for the so-called F-test for the re-
gression on the PLS scores. The F-test provides a
means for nsscssmg the slausucal sigmficance of
the app on rel p {16]. For sim-
ple hnear rcgmsslon mncluding as a special case
regression on the first PCA component, the test
statistic has an F distnbution with 1 and n—2
degrees of freedom under the zero-slope hypothe-
sis. This 1s making the standard assumption that
the noise terms 1n the regression model are inde-
pendent and normally distributed with mean zero
and a common vanance. For regression on the
PLS direction this reference distribution is no
longer correct, b of the dependence of the
direction on the response variable

To get an approximauon to the correct refer-
ence distribution we generated 5000 random sam-
ples of size 12 from the normal distnbution, asing

30 40 80

20

Parcontiles of PLS *F*

10

Actual w 05 Value
Nominal A'Dhas 05 Valu

0

[ 10 20 30 40 50
Percenties of F(1.10)
Fig. 8. Peroenule-percentile plot of 5000 Monic Carlo-gener-
ated F staustics for regression on PLS factor versus the F
drstnbeton.

cach sample of responsces to get the PLS direction
for the twelve observed chromatograms in our
example. Uniform deviates were generated using a
multiplicative congr | with mod-
ulus 2" — 1 and mulupher 7 {17}. Normally dis-
tnbuted deviates were obtaned via the Box-
Muller transformation. We assumed unit vanance
for the responses, but this has no beanng on the
results, because the PLS direction vector and the
F statisuc are mvanant to scale multiples of the
response [11). For each of the 5000 samples we
computed the F staustic for the regression on the
PLS dirccion. The ordered values are plotted
against percentiles of the F distnbution wath 1 and
10 degrees of freedom m Fig. 8. If this were the
correct reference distribuuon the ponts should
fall very ciose to the diagonal, howevzr, there 1s a
clear upward bias that results from the way the
PLS direction 1s selected. The figure allows us to
correct for this bias. For instance, with our design
a PLS F of 10 1s equivalent to an ordinary F of 5,
which has s:igmficance level 0.05. If instead we
were 1o look up the PLS F value in the ordinary F
table we would erroncously conclude that the sig-
nificance level 15 001,

The simulated distnbution of the test statistic
provides  'imates of the significance levels for the
regresstons of ash, mix time and loaf volume on
their respective PLS directions count the number
of umes the stmulated values exceed the observed
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values for the data at hand, and divide by the

ber of rand ples generated. The follow-
ing table shows the correct significance levels and
the values that result from using the F distribution
for regressing ash, mix time and loaf volume on
their PLS directions. The numbers in parentheses
are esti d standard d that arise from
the Monte Carlo sampling technique.

are virtvally identical in this case, have a causiuve
retationship or were selected simply because they
show the greatest variation. Loaf volume 15 an
intermediate case, showing a moderately signifi-
cantly relationship with protein composition The
corresponding PLS direction differs somewhat
from the principal component, and we have an
indication that proteins eluting at 17-19 mn might
be important. Further experimentation would be

Response Obsesved F Flevel True level

Ash 38 0080 0.38(20007)
Mixtime 268 41-107* 0002 (x00006)
Loafvolume 120 0.0061 003 (£0.0024)

Hoskuldsson [5] and others have suggested to use
the F-test for the regression on the PLS compo-
nent as an approximation Because of the upward
bias, comparing the PLS F statsuc to the F
distnbuuon is a hiberal procedure; ‘non-signifi-
cance’ according to the F distnbution mmpires
non-significance according to the correct distnbu-
non of the PLS F statistic, but sigmficance
according to the F does not imply sigmficance
according to the correct distnbution. The above
computations show that the difference between
the F.level and the true level can be quite dramatic,

Unlike the ordinary regression F statistic, the
PLS F stausuc has a null distnbution that de-
pends on the distribution of the predictor vana-
bles Hence, this statistic has to be recahibrated for
cach new regression design. Monte Carlo simula-
ton offers a means for performing this calibra-
tion. The exact distnbution for some very special
designs has been worked out mn ref. 11.

The fact that certain peaks are given large
weight by PLS or principal components does not
prove that they are strongly related to the re-
sponsc of interest Some direcion will always be
selected, and 1n lugh dimenstons 1t 1s quite possi-
ble to obtair a stnking plot of the PLS weights
that 1s simply an aruifact. From the preceding
calculations we conclude that, despite the impres-
sive loadings plot, there 1s httle evidence of a
relationship between ash and protein composition.
On the other hand mix tme appears to have a
rather strong relationship with protemn compost-
tion; however, further experimentation would be
needed to determine whether the peaks indicated
by PLS and pnncipal component analysis, which

ded before we could say anything conclusive.
Such information 1s, however, of great potential
value, as It gives a tentative indication of specific
proteins that, through subsequent isolation and
charactenzation, nught explain vanous attnbutes
or serve as the basis for sensiive and rapid tests.

DISCUSSION

Data analysts in fugh dimensions 1s a trchy
business. There 15 considerable latttude for the
selection of “factors’ that appear to demonstrate
striking relationshups. In order to separate the
artificial relatonships from the real ones, great
care should be taken to employ proper statistical
inference methods that account for the multiphic-
ity of directions available. One method that we
have demonstrated 15 the use of simulations to get
the correct null distibution of the F statisuc for
regression on the PLS direction. This provides a
useful screening procedure f{or spurious directions

Our goal in the present investigation 1s an
ambitious one In additton to classifying or pre-
dicting from the chromatogram we attempt to
mterpret the weighting vectors produced by the
dimension reduction This 1s the most difficult
aspect of the analysis and the one that 1s most
hkely to give spurious results. There 1s less of a
problem if onc merely wants to predict or classify
without attempting to mterpret the weighting vec-
tors. In such mstances the PLS dimension reduc-
tion 1s likely to be a useful one, because 1t chooses
projections with maximal covartance with the re-
sponse. Nevertheless, as we have demonstrated,
the standard regression tests and prediction inter-
vals require adjustment for the varnable selection,
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Abstract

Bandeen-Roche, K and Ruppert, D, 1991 Source apportionment with onc source unknown Chemometrics and Intelligent Lavoratory

Systems, 10 169-184

Attnibution of local pollution to area sources is 1 to

of the Source app

addresses the problem by staustical inference of source contnbutions to total pollution from observations of ambient air chemucal

composiion Mass balance hods of source appor

use linear models witt chenucal composition vectors of sources as

covanates Histoncally, mass balance methods have assumed that at least a proxy of cach covanate s available and has been

accounted for

We attempt to adapt the mass balance method to the case in which umidentified sources may exist by esumating an unknown,
possibly *background’, source Further, we allow source contnbutions to pollution to vary over tume, creating a model with a

‘structural’ p and infinitely many ‘madental’

We treat the “incidental’ source b as

P
random q gating the prop of the di

g relatve source contnbutions 1s then of interest

¥
Reasonable identifiability constraints are required in this context Nonparametn. estimation of the unknown source 1s possible under
such constraints but 1s impractical for small samples which are measured with error Therefore, we develop a parametne model for
the distnbutson of the observations and examune estimates based on this model

INTRODUCTION

One of the important problems of environmen-
tal engmeering 15 to wdentify major sources of
pollution and determine their relauve effects upon
the surrounding (‘ambient’) air, water, or some
other medium Attempts have been made to pre-
dict cumulative effects based on chemical mea-
surements taken at mdvidual source locations

0169-7439/91/50350  © 1991 - Elsevier Saence Publishers BV

However, factors sach as meteorology, topogra-
phy, and muluplicity of sources make predicting
the effects of sources at a removed location dif-
ficult. An alternative approach is to measure sam-
ples of the ambient medium. Source contributions
to pollution levels arc then inferred using statisti-
cal methods. The body of methods which has been
developed to achieve such inference 1s known as
source apportionment.
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The chemical mass balance (CMB) method of
source apportionment, developed for study of
atmosphernic pollution, assumes a hinear model for
the chemucal composition of ambient aw. The
chemucal composition vectors of area pollution
sources, called source profiles, are used as co-
vanates, and mass contributions of sources to
pollution are considered to be the parameters of
mterest Typically, source profiles are given in
terms of mass fractions — for instance, mulligrams
of particulate matter with a given chemucal prop-
erty per gram of particulate source output Source
contributions, then, are often parametenzed as
concentrations — particulate mass of a given
filtering specification contributed by cach source
per umt mass of that specification, or per umit
volume of ambient air. Linearity arises from the
assumption that mass 1s conserved from sources to
the ambient air sampler, so that the composition
of the observed sample 1s just a sum of the param-
eters multiphied (in a vector sense) by the corre-
sponding covanates Parameter esttmation has
usually been achteved using vanations on stan-
dard least-squares methodology It is important to
note that the traditional CMB model treats each
ambient profile observation, perhaps time-aver-
aged, as a distinct sample In this context, vector
elements provide repeat observations, and time
variation is not accounted for in any explicit way.

As useful as CMB models have proven to be in
practice, the methodology has significant short-
comings Perhaps chief among them 15 the fact
that they require both awareness of all possible
sources and knowledge of thetr chemical composi-
tions, as 1s illustrated by an example described by
Aldershof and Ruppert [1] Researchers at EPA
were 1nterested in the relative contributions of
woodstoves and vehicular emisstons to local en-
vironments. A source profile for woodstove smoke
was carefully constructed, but unfortunately the
source profile for vehicular emissions was not
available at the time. A chemical engmneer m-
volved in the study suggested that the profile of
the unknown source might be considered as a
stable parameter, and that thereby a well posed
model for the composition of area pollution mght
be formulated. As in usual CMB models, the
parameters of mterest are the contributions of all

sources to pollution However, their estimation
requires estimation of the unknown source profile.

The existence of problems such as that which
we have just described has led us to develop
methodology wiuch generalizes the traditional
CMB model 1n two ways Furstly, 1t allows for the
possibiity that all sources bave not been de-
termuned by estumating an unknown source. We
will allow an arbitrary number of known sources
but only one unknown source The case of one
unknown source is (nteresting 1n 1ts own nght, as
the woodstove example shows Moreover, in some
situations where there are several unknown
sources, investigators will be willing to aggregate
all unknown sources into a general ‘background’
unknown For example, this would be sensible 1f
the relative contributions of the unknown sources
were stable over time After this aggregation of
unknown sources our methodology can be ap-
plied, though of course only the disttibution of the
aggregate contribution from the unknown sources
will be estmated

A second, more subtle modification 1s that our
models are formulated for source profiles given in
a form which 1s proportional with respect to a
fixed set of chemucal species, rather than 1 mass
fraction form In particular, we define a profile
vector by taking the particulate mass per umt of
source output due to cach member of the fixed set
and dividing by the particulate mass per umt
attnbutable to the entire set of species. This 1s a
generalization in the sense that transforming mass
profiles to proportional profiles is always possible,
whereas the information necessary to perform the
converse operation may not be available 1n some
applications  Although this course of action was
taken chuefly to accommodate cases when profiles
are orly given i proportional form — the
woodstove data set 1s such a case — we remark
that it 1s often possible to obtamn proportional
profiles which are much more accurate than mass
fraction profiles (see Kowalczyk et al [2]) An
important spinoff of using proportional profiles,
however, 1s that the total mass contributions of
sources to pollution are no longer estimated di-
rectly Instead, source contributions of only those
chemucal spectes actually measured and used to
define the profile — a quantity of interest n its
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own nght — are estimated Happily, one may
deduce total contributions from the proportional
profile parameters if source profiles are available
m terms of amounts

Studying the estimation of an unhnown source
in the context of the CMB method has led us to
consider two other hmutations of the CMB model
The first arises when one attempts to estimate the
unknown source namely the inabihity of the CMB
method to deal with the vanations of source con-
tmibutions over time. To understand the problem,
wonsider the fact that ambient sample composition
is determimned by the compositions of known
sources, a constant unknown source parameter,
and source contribution parameters that differ
with each observation This creates, in the
termmology of Kiefer and Wolfowrtz (3], two
classes of parameters a finite-dimensional ‘struct-
ural’ parameter (the profile of the unknown source)
and an infinite sequence of ‘incidental’ parameters
(daily proportional source contributions) Any
reasonable estimator of the structural parameter
must nclude observations corresponding to dis-
tnct inaidental parameters. However, it 1s well
known that estimation s often impossible 1f mci-
dental parameters are determimistic In order to
address this difficulty, we have chosen to treat
daily source contnbutions as random quantities
In this context, the distribution of the mcidental
parameters (source contributions) rather than the
mdividual parameters 1s estimated.

We will address a second hrtation by explor-
ing error structures which are more natural to
nonnegaiive vector observations than the additive,
Gaussian error structure implicitly assumed by
CMB models

Henceforth, random-proportion, unknown-
source CMB models will be 1eferred to as source
apportionment, one¢ source unhnown (SASU)
models, and we will consider source contnbutions
to be those resulting from a proportional profiie
formulation unless otherwise specified. We will
develop our model, which 1s no longer linear, and
exanune 1ts relationship to the traditional CMB
model in the next section. To make the exposition
sumpler, in this paper only the case of a single
known source will be treated exphatly. In ad-
dition to the nonhinearity of the model, the one-

source-unknown case differs fundamentally from
the case i which all source profiles are known
that its parameters are not identifiable without the
addition of constraints It will be helpful to ex-
amne the case in which observations are made
without measurement error — in other words,
day-to-day differences in source contributions
provide the only random variation In this case, a
sumple constraint allows consistent estimation of
the parameters of interest, and asymptotic distri-
butions for the estimates are available Measure-
ment error complicates estimation constderably —
so much so that nonparametric estimation be-
comes extremely and perhaps prolibitively dif-
ficult 1n a small sample context. Consequently, we
will propose an appropnately constramned para-
metric model and study 1ts behavior

Source apporttonment and CMB models have
been discussed by many authors, including Coo-
per and Watson [4), Gordon [5], and Henry et al
{6] Introduction of unknown source ¢stunation
into CMB methodology was done following ref 1
Estumatton of structural parameters 1 the pres-
ence of incidental parameters was first discussed
by Neyman and Scott [7] and has since been a
topic of continwing interest Relevant papers in-
clude refs 3 and 8~10 Campbell and Mosimann
[11] provide nsight mto parametric models for
proportional data.

SETUP OF THE PROBLEM

Observations in CMB models are gencrally the
total amounts of various chemw.al species col-
lected duning ambient air sampling, perhaps given
as concentrations When source profiles are pro-
portional, an equivalent, geometrically intuitive
formulation of the problem results by standardiz-
ing observations to proportions as well Both for-
mulations prove to be useful 1n what follows

The SASU model

Although focus soon shufts to the case in which
only one source ts known, we will state the model
for the general case of m known sources. Let
Xj,..., X,, be p-dimensional, determmistic co-
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vartates, let 8 be an unknown, p-dimensional
parameter. In the SASU model, x,, k=1,...,m,
are profiles of known sources, 8 1s the profile of
the unknown soarce, and each has been standar-
dized to prupurions We unpose the resulting
constraints

7&, 20"1 (k=1,....m) o

x >0Vk. >0

In addition, let a, (1=1,...,n) be independent
and sdentically distributed (iid), m-dimensional
random vectors whose components are nonnega-
tve and sum to at most 1. The vectors a, repre-
sent the daily contnibutions of the known sources,
so that the scalars (1 — £, ,,) correspond to pro-
poruonal contributions of the unknown source
Let G be the jomnt distribution function for the
components of a,, that s,

G(e) =P{a,< ¢}

where the mequality holds for each component
Analogously, let v,° be nd, m-dimensional random
vectors with nonnegative components and y?
nonnegative, real-valued random vamable (1=
1. .n) ¥" 1s the corresponding vector to «,
given 1n terms of amounts, so that 7 represents
the mass contribution of the unknown source to
the set of chemucal species defining the profiles.
We will denote the Jomt distnbution function of
the components of ¥, and y? to be F, that 1s,

F(e) = P{y", 1" <c}
where V’ stands for the transpose of the vector V

Again, the mequahity holds for each component.
Random vanables of mterest are

m m
n= E“:Axl+(l_ E“:k)a ()
R~1 k=1 /
and
™
5= ¥ vie+v'6
k=1
so that

»=—'—-— and a,

Z l/ ZY:A

Components of the vectors y; and s, represent
true ambient air chemical proportions and
amounts, respectively, on day 1. We observe Y,
and S, which are measured values of y, and s,. In
the next section we examune the simple case where
Y, =y, and S, =5, We develop below a parametnc
model for the measurement errors. Notice that in
the case of present terest, m=1, y,=ax+(1
—a,)8 and 5, = ¥ +v0.

Transformation to CMB model

The tradittonal CMB model 1s as follows

m+1

5= L cuay (3
A=1

where ¢, = total particulate mass contributed by

source A per unit volure of ambient air on day 1,

a, =mass profile of source &

The subtle difference between the CMB param-
eters, ¢, and the SASU parameters, y;; — equiv-
alently, &, — occurs because mformation regard-
ing the relative amounts of source outputs not
accounted for by the set of measured chemical
species ts lost mn the transformation from mass
profiles to proportional profiles In this section we
show how the parameters mn our formulation as
given 1 the SASU model are related to the
parameters n eq. (3)

Suppose one profile — say, a,,,; — 15 un-
known. Let §, =X s, . Clearly,

17

A Sy

A
=, ="~ and y, =
Zay, Yap., &
J 7

Therefore, ¢q (2) 1s equivalent to
(1 -X “:A)
A=1
+ ———a
“ Zamn/
’

m+1

‘E

m}@

Z“;A

which imphes that ¢, = ¢,a,/X a;, and ¢, a;, =
&, x,, k=1,.. .m (smlarly for k=m+1, ).

Knowledge of §,, 6, and a;. then, are sufficient
to determme ¢, a;, k=1,. .,m+1 (Physcally,
¢, 4, represents the amouni of the yth chemcal
species contributed by source k to the ambient air
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sample on day i.) However, we wiil be esimating
only the distnibution of the a, values because 1t 1s
tmpossible to consistently estmate the a, values
th Ives 1n the p of error
(see below) Itas possible to get around this incon-
venience m the followng way:

Let q;, =ca,, Then

G _ qu/Z”qA,. _ au/z,,ah _ X @)
9, ‘1/.,/2,,‘11.,. aA,/E,,a/m *ky

Letting x,,,, =8, we have a system of indepen-
dent linear equations in p(m + 1) unknowns
Eq (3) imphes

Y a,-5,=0, y=1..p )
hA=1

Eq (4) implies

WX, " Gra=0 A=l m

J=2. .p (6)

There are a total of p+(m+ 1) p—D=p(m+
1) +{ p — m - 1) equations lence, we may solve
forg;s A=1, ..m+11f pzm+1 — thatus, of
there are more species than hnown sources

If, m addition, the mass source profiles, a,
k=1, ,m, are known, solution for the corre-
sponding source contributions, ¢, follow im-
mediately. Notice that these solutions are cor-
rected for the contribution of the unknown source

NONPARAMETRIC MODELS
No measurement error

For now, we will use the formulation of the
SASU model for which observations are propor-
tional, In the case where observations occur
without measurement error,

Y=p=al{x-0)+8 (7)

In this section we take a nonparametric ap-
proach n that the distnbution G of ¢, 15 not
assumed to be (n a parametric fanuly, Without the
natural constraints mentioned above and an ad-
dittonal restriction on G, the model (eq (7)) 1s not

identifiable. To understand why, consider a simple
transformation:

Let Y,~x=Z, §-x=¢, 1—a)=2A, Itis
clear that eq (7) 1s equivalent to

Z,=\¢ (®)

Let X, =) /2and $=2¢ V.= X, has exactly
the same distrrbution as Z, This means that the
parameters of Z, are not 1dentifiable from 1ts
distnbution. In fact, the model (7) mmplies that
Cordy,,, y,§=1V J, I and, hence, that the p-di-
menstonal systern effectively reduces to one di-
menston

Reahzing that nomdentifiability occurs because
our model allows too much scaling suggests an
approprnate constrant  confining allowable distri-
butions for a, to those whose left boundary of
support 1s exactly 0 — that 1s, G(a) > 0 for each
a>0 It follows that

Im mm «,=0 with probability 1

a0 lgign
or ®
hm mun A, =1 with probabihty 1

n—w lgign
which means that 1if enough samples are taken,
eventually one will be composed almost entirely of
chenucals contributed by the unknown source
Our motwvating example, described in the intro-
duction, provides some insight on summer days,
one would not expect people to be using wood-
stoves, and condition (9) appears reasonable
Several results follow under condition (9), When
there are no measurement errors, the observations
Y, I on the line t 1 p-d nal space
connecting the known x and the unknown 8 This
suggests a simple estimator of § — the observa-
tion farthest from x In fact, 1t 1s not difficult to
prove the following,

Proposiion 1 Define Y,* to be the observation
Y, such that may, ., Y, ~x)l;= Y, - x!
Then Y,* 15 a consistent estimator of § 1f and only
if condition (9) holds.

Once we estimate @, we can then estumate the
contnbutions, «,, of the hnown source The basi
idea 1s that «, 15 the distance between Y, and 8
expressed as a fraction of the distance between x
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and 4 Note thit Y,* 1s 2 monotone sequence and,
thus, 8, equa! to the yth component of Y,* satis-
fies the conditions of the following result.

Propositon 2 Let 6, be such that |x,~ 6| #0,
Let 8, be any monotone sequence whose Lt 1s
8. Define

F ()= 3 (Y, <x) = di(Y,)

where 1 1s the mdicator function and ¢ d {. stands
for empincal distribution function Define
G,(z)=0 :<0

F,,[: 67, ] f0<z

1 1<z
Under (7), 6,,(:)24G(z)

Define &, =(Y,,~§,)/(x,~46,) Then G,
1s the emprical dlsmbuuon [uncuon of {dy,,. .
&,,) Because there are no measurement errors,
(&,, — a,) = 0 with probability 1. As it 1s a matter
of algebm to show that maxl i< n|&, —«a,| <

/ [ VAE | thc slronger statement max]
<n | &, =« «——)0 also holds.

\Ve have seen that & can be estimated because
when a, 15 close to 0, then Y, consists mostly of
the contribution from the unknown source. The
rate at which Y,* converges to 8 depends on how
fast minl <1< na, approaches 0, which in turn
depends on the behavior of G near 0 In fact,
extreme value theory provides an asymptotic dis-
tnibution for Y,*

Proposiion 3 Suppose that support {a} = [0,¢},
el
Suppose also that G(a) = Kafon 0 < a g K~ 1/A),
Then
y
m P{|Y*=0| < e } =) .
dm {177 =) < =t} =0 ity <0

r \
1=ex —(—-——~) } fyz0
p{ =9
The key fact mn the proof of Proposition 3 1s as

follows: given independent observations {rom G,
@ 0.0y &y, extreme value theory dictates that

{(nl\’)‘/ﬁ mm a, a} ~ H(a)

where > denotes weak convergence and H 1s the
distnbution such that H(a) =1 —exp{—a®} for
nonnegative values of a and O otherwise Lead-
better et al. [12] provide an excellent reference to
extreme value theory.

With measurement error

Given the results attamnable in the case of no
measurement error, one mught hope that under
condition (9) sumilar results might hold n the case
with measurement crror. Unfortunately, this does
not appear to be the case. of course condition (9)
15 stll necessary, but mtroducing measurement
error makes the problem ‘much’ harder For one
thing, 1t makes consistent estumation of the ndr-
vidual a, values impossble. In the case of no
mieasurement error, it 1s possible to wnte a, as a
function of the observations and the structural
parameter. Since every observation contributes to
the estimation of 6, every observation contnibutes
to the esttmation of a, through the function (recall
the estimator &,, discussed following Proposition
2) In the presence of measurement error, it 1s no
longer possible to write «, as a funciton of the
observations and the structural parameter (we no
longer see the true value of the observation) Hence
in effect only finitely many observations (1 vector
observation or p scalar observations) contribute to
the estimation of a,. 50 consistent estimation 1s
mpossible.

Estumating the structural parameter 1s much
harder, as well It 1s sull helpful to think of the
problem in terms of estimating the endpont of the
bine segment between the known x and the un-
known 8. When observations are made with mea-
surement error, however, they appear as a ‘cloud’
of points about the line segment rather than being
confined to the segment itself. The estmator Y,*
defined n the previous section, then, will eventu-
ally overshoot @ 1f the cloud extends far enough:
formally, Y,* converges to a support boundary of
the distribution of Y, rather than to 8. the support
boundary of the distribution of 3. If one were to
assume additive errors for the observations given
in terms of amounts, S, (or more appropnately for
some transformation of S,), the method of decon-
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volution may be used, in effect, to account for the
measuremen: error Such an approach is capable
of g 8 cc ly. Unfort ly, con-
vergence rates of nonparametric deconvolution
estmators are mherently very slow. Carroll and
Hall {13] have shown for a large class of distribu-
tons that n the case of normal error, no decon-
volution estimator can achieve a rate higher than a
factor of (fog n)~1. It 1s possible, however, that a
higher rate may obtan for distnibutions confined
to a bounded support. Also, 1t 15 known that
certain functionals of deconvolution estimators
converge signuficantly faster than the estimators
themselves, and 1t 1s not unreasonable to expect
that an estimator of & could be one of them
Further research 1s necessary to investgate these
possibilities

A PARAMETRIC MODEL

In order to produce estimators which achieve
reasonable rates of convergence for moderate sam-
ple sizes, 1t appears that parametnic models are
required for both G and the measurement error.
The discussion 1n the previous section indicates
that any reasonable model for time vanation must
satsfy condition (9). In keeping with the spint of
maximum generality, we will model for propor-
tional observations, which suggests that we utihize
distributions inherently appropriate for propor-
tional data,

With these considerations in mund, we have
chosen to model both time vanation and measure-
ment error with the Darichlet distibution. A gen-
eralization of the Beta distribution, the Dinchlet
dist.'bution 1s especally well sutted to modeling
propoztional vectors created by dividing amounts
obscrvations by their sum. Such vectors are ex-
actly Dirichlet-distnbuted whi amounts are
independent of each other and the proportions
which result from dividing the amounts by their
sum arc independent of the sum, whenever
amounts are independent gamma random vana-
bles with common scale, and 1n certain cases when
amounts are positively correlated, the vector of
amounts divided by sum is Dirichlet. In addition,
Dinchlet random variables satisfy some very con-

vement properties Let Y be a p-dimensional Di-
richlet random vector with p-dimensional parame-
ter vector, § (see below). Any permutation of Y 1s
Duntchlet with parameter equal to the correspond-
ing permutation of & Also, suppose Z 1s an
amalgamation over some partiion, A = {a,, ..,
a,}, of the coordinates of Y — in other words,

z={ Y., ¥ Y,}

J1€q j8a,

with ¢ <p. Then Z 1s Dinchlet with parameter
equal to the corresponding amalgamauon of 8.
These properties will allow us to combine and
permute coordinates of observations m order to
mprove esttmates without changing the underly-
mg model for esumation, see below, Campbell
and Mosimann {11] provide a basic summary of
these and other properties of the Dirchlet distri-
bution
In general, the Dinichlet density has the form
»

o 318) = L T 00

Iir(s) ™

j=1

?
where A = 1§
-1

It follows that the first two moments of a
Duinchlet random vanable, Y, with distribution

fo(318) are:

6/
E[y)=w=3 (10)
s{(a-8,) 1-gp,)
Var[}’j] = (/T(%Tl-).i_z .’i’(LA___“&)!_ (11)

In general, the kth moment of ¥, 15

A1
Il (8,+m)

E[1}] = 55— (12)
ﬂo(A+"l)

Notice also that the coefficient of vanation of
Yis

(1 )

Myl =y oEen

(13)
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We will model the measurement error process
by assuming that the conditional distribution of Y
aiven « has a Dirichlet distnbution with mean
ax + (1 — a)@ and scale independent of a. There-
fore, assume that Y; is Dinchlet with parameter
8, = Ala,(x,~0)) + 6] for some constant A >0
(note that E{Y; |§,] = a,x + (1 — ,)8 =y, and that
L,8,=A4 for each 1) Now, the margmal distribu-
tion of Y, 1s obtamned by integrating f, over the
distribution of «, which we hypothesize to be the
Beta(A,A,) = Dinchlet(A,,A,) distnbution, In
other words, the density of the margmal distnibu-
ton of y has the form:

LA
f(}:)=£lfo(Jyla)%&y%a%

xah 11— )7 da (14)

where fo(3; @) = fo(), ] AMa(x - 8) +8)) Eq (14)
corresponds to taking an average of the densitics
fo at 3, given each possible value of a, weighted
by the probabihty of «

In the development which follows, we will be
using the quantty 1 - a rather than « From the
permutation property mentioned above, 1t 1s clear
that (1 = «) has a Beta(A,,A;) distnbution. Let-
ung A =A; and A=A, +),, we may ..para-
metenze the beta parameters from (A, A} to
{A, A} Certain functions of the source contribu-
tion parameters are of at least as much interest as
the parameters themselves: for example, A/A =
E[1—a) and [A(A = N/AAA + D))= Vadl -
a] = Varja}. From now on we will refer to A as the
crror parameter and {A, A} as the source contri-
bution parameters.

Given p 2 3, all of the parameters of this model
are 1dentfiable from its moments (of order 3 and
less). In other words, these moments completely
determme 4, A, A, and 8. Therefore, method of
moments estimators for the parameters are con-
sistent, The moments equativns may be developed
as follows. Let Y, be an observation from eq. (14),
where §, 1s as defined above, Recall that Z, =Y,
- x and ¢-=x - 8. Using eqgs. (10), (12), and the
fact that, for any random vanables U and V,

E[U}= E{E[U |V}, we may wnite for each coor-
dinate 5, y=1,..., p:

m, =E|z,] = E[E[2,10 - a)]]
. A((l—ag)d’,-i‘x/) -,
=¢,E[l—a,]

A
= (13)

Similarly,
my, =E[Z?)
= {A¢}E[(1 - o)) +¢,(1-2x,)E[1-4q,]
+x,(1=x,)Ha+ 1}

1 [AAA+Y) ¢ (1-2x)A
=_A+‘1{ A+ T A

+x,(1—xj)} (16)

my, i=!=Ii'[Z,’/
1 [ MM+ D(A+2)
@A+1(8+2) | A(A+1)(A+2)
3800 =2x,) AN + 1)
A(A+D)
[3¢,(1-x)(a-2) + 2] o2
+ X

+2x,(2x2 - 3x,4 1)} a7

Method of moments estimators are formed by
substituting the sample moments,

r
M=t ¥ (%= 5) ()
=}
for m,, mn cgs. (15)-(17) and solving for the
parameters of interest. As the moments equations
overdetermine the parameters, however, moments
estimators are not unique. In the following sec-
uons we will develop several different estimators,
examne therr performance under the model 1 a
simulatton study, and test them on a famous




W Onginal Research Paper

fa

@:A=10
~
=] A o
o
ol
o % °
ot %o ¢ o
© o
I 0,50 o O °
b S00  cu (0408 o 0%,
v°f o Ho % @ o o
S ®*° so0 g
So o o
© & 000 ®
St %0 gu 0° 90 °,° °
o oo 0% o
- ©0 0 %8
o 08 8 °
°
o
©00 01 02 03 G4 05 06 07
Coord 4
{bd: A =100
~
o
3
o
|
o|
Lo
°
I
N
Se
o
o
o
o
o

00 ot 02 03 04 05 08 07
Coord 4

Fig 1 Dinchlet mixture data Observations ate gencrated from
modet (14) with parameters A = (2, 2)’ and ¢ = {0, 005,01,
02,04,025}, x={02,02.02,02 02,0} Contrast of case
(). & =10, wath case (b), & =100, illustrates role of & parame-
ter Sth data component 1s plotted against 4th

stmulated source apporttonment duta set, Compu-
tation of estimates and error measures, as well as
generation of ‘random’ observations, were per-
formed on an AST PC with a 286 processor using
the GAUSS system, version 20,

Description of the simulation

Stmulations cach consisted of 100 runs at 100
observations per run generated from the model
(14). The sample size of 100 was chosen to be
comparable to that of a typical source apportion-
ment data set. Observations were six-dimensional
with x= (0.2, 02, 0.2, 0.2, 0.2, 0)’ and @= (0,
0.05, 0.1, 0.2, 0.4, 0.25)". A simulation was per-

formed for each of three pairs of source contribu-
tion parameters, {A,A}. @) {4,5}, () {24}, and
(i) {1,5). Recalling that Eft —a,}=1- E[a,)=
A/A (see eq 10) and noting that

E[Y} = (Ela])x+ (E[1-a])8

1t 1s clear that (1) represents a very favorable
estimation scenario — one in which observations
tend to be close to the unknown source profile, §
Siilarly, () and () represent increasingly less
favorable scenarios.

In addition, each simulation descabed above
was performed at two values of A* A =10 and
A= 100. Fig 1a and b display plots of data simu-
lated under (1) for the two values of A, Examina-
tion of the plots and review of eq. (13) makes it
clear that A= 100 represents middhing measure-
ment error while A = 10 produces very severe er-
ror.

As a measure of performance, median and worst
90th-percentile distance of each estimate from 1ts
true value are given

Esumation of error scale, A

Although 4, the error scale parameter, 1s m
effect a nuisance parameter, 1ts estimation 1s 1m-
portant because estimates of source contribution
parameters, A and A, and the location parameter,
8, depend directly upon A. Also, since seventy of
measurement error vares mversely with A, that
parameter is itself of measure of how well we may
expect to estimate the parameters of mterest.

It happens that each pairwise combination of
observatior. coordinates — say, (,k) — produces
an estimate 4, of A. Define for each coordinate 4,
J=h..,p

Ay (1=2x,)my -+ x,(1 - x,) (19)
By (A4 1)my, ~ 4, (20)
G (A +1)(a+2)my, - {3(1-2x,) B,

g, [3(x, (1= 5,08 =2) +2]

+2x,(2x7 - 3x, + 1)} (2)

where my,, my,, and m,, are as defined m eqs.
(15)-(17). It is straightforward, 1f algebraically
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pamnful, to venfy that for any pair of coordinates
{1k},
2 4

A= Mz"m___’."_/‘/z_ -1 (22)
Mymg, = my mi;

The estimator A ,‘ results by substituting the
sample moments, M, (sce ¢q (18)), into eq (22).
However, the ﬁrst-order bras and vanance of A "
mcrease with {6 — x,{ and [0, ~x,}. From a
heuristic viewpoint, one would expect the best
estimates to result from coordmnates for which
6,=x, — in other words, for which the only
vanauon 15 due to measurement error Swnce E{Y,,
~x,]=¢(8,— x,) (c constant over 1 and ), lhe
My, ’should comain information about the relative
sizes of the quantities |0, ~ x,] Wuth these things
mn mund, we exanuned four estimates of A, each a
weighted average of the pairwise estimates with
weights w, on pair (4,k) as follows:

DEST wy all equal — 1e, unweighted
average of pairvwsc estimates

DAWEST. w, = T T+ T

DMWEST: !

Yk My, My |
DBEST" wy; = 1 for pair 1,k such that | M, 1,
| M;, | are mummum (n
other words, such that one
coordinate of the par has
the smallest value of | A, |,
1=1,...,p, and the other
has the second smallest)
wy = 0 otherwise
A y of the simulation results 1s given 1n
Table 1. DMWEST and DBEST clearly outper-
form DEST and DAWEST. It 1s harder to dis-
tnguish between DMWEST and DBEST; ai-
though DBEST generally outperforms DMWEST
shghtly i terms of standard deviation and 90%
distance, DMWEST tends to have a smaller 50%
dewviation from the true parameter value. In both
cases, reasonable estimates scem to be produced
regardless of model parametenzation,

Estimation of source contribution parameters

In this section we develop estimators first of
{A. A} and then of 8. Given A, each coordinate

of the observations provides informaton sufficient
to estumate {\, A}. In particular, 1t happens that
for any coordinate J,

Amf A(A+1)

P TAGED) (23)
Amy,B,(A+2)A

R YU @9

Clearly we could substitute the sample esti-
mates (18) in (23), (24), and the definttion of B,
and C, and then solve the above system of equa-
tions for A and A, for any j. Reasoning that some
coordinates may produce more reliable estimates
than others, however, we may wrnte

? AQ+D &

EWIBI A(A+1) 2"’"1; (25)
=1

d AA(N+2

L w(= }\(—f\# Z w,Bm,, (26)
J=1

for any system of weights, w. We will create
estimates based on the solutton of eqs (25) and
(26) for A and A, using several choiwces of weights
and sample-based substitutions.

In order to identify coordintes which should
produce more rchable information than others,
note that smce Var{Y, = x ] = (Var{a,](6, - x,)?

+ [(my, + x )1 = my, - X /(A + 1),

2 Var[a,}
CV|Y, - x T ———
(et 5]« el
(my,+x)(1=my, - x,)
mi (A+1)

b))

As the first term 1s constant and exactly what
would result 1f there were no measurement error,
the coord ase CVs ¢ how much vana-
tion 15 duc to measurcment error relative to each
other. Theoreucally, the most rehable information
should be obtamned from the coordmates having
the highest proportion of its vaniation due to source
contnbution randomness — n other words, the
coordinates with the lowest CVs. One approach
might be to calculate source contnibution estr-
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TABLE 1

of €Irof P

Median and 90% absolute deviation of estimated error parame-
ter from

Parameter Modian distance from 3 =10

value
A A DEST DAWEST DMWEST DBEST
4 5 0902  08s2 0502 0859
2 4 171 174 121 148
T s 268 pALS 193 19
90% distance from A = 10
DEST DAWIST DMWEST DBEST
4 s 338 319 198 230
2 4 104 780 600 289
1 5 124 127 101 700
Median distance from 3 =100
DEST DAWEST DMWEST DBEST
4 5 121 106 853 865
2 4 2200 136 8§28 962
) -] 143 129 940 107
90% distance from A =100
DFST DAWEST DMWEST DBEST
4 5 4317 374 211 207
2 4 9z 628 262 35
1 s 695 571 263 47

mates base.. inly on the coordinate with the lowest
sample CV. However, exammation of eq. (27)
suggests an approach which includes all of the
data The second term of the sum tends to de-
crease as |ny, | increases — n other words, as
the distance between x, and 6, mcreascs. As the
dimenston of the observation mcreases, the |, |
values will tend to decrease. However, amalgamat-
ing the observations to a few favorable dimensions
can provide several coordinates with large values
of |m,,| while retaming a correct parametric
form We chose to amalgamate to three coordi-
nates, the smallest number which allows identifi-
cation of the entire parameter space, and chose
the parucular amalgamation for which the coordi-
nate with the lowest sample CV is retamed and
the others are added in such a way as to maximize
the resulting sample |m, | values Better amalga-
mations might well exist

Given p variate observations Y,. 1=1..... 2,
the estimators we examined are as follows:

(1) AMAL-MW:
(a) For cach Y, create R, as follows:
R,, = Y,.. where the sample CV of Z,_, is
ini g all di of Y2

R,= ¥ Y. where P:={; such that
JeP
Vil
M, >0}

Ry= Y ¥,. where N:={, such that

JEN

om
M, , < 0).
@(f N is empty, let N = the coordinate of
the second least sample CV and dclete
that coordinate from P, perform analo-
gous operation if P is empty).
(b) Create the analogous amalgamation of x,

u.

(¢) Subsutute the DMWEST esumator of A
for A in eqs. (25) and (26). and the defimi-
tions of B, and C,.

(d) Substitute ll:c sample expectations of (R,,

1 .
-u) — L (R, ~u) for m,, in (25).

(26) and ll;c :leﬁmuons of B, and q

() Solve (25) and (26) for A and A using
w=(1/3, 1/3. 1/3), resuling 1n estima-
tors X and A, respectively.

(2) AMAL-BP: Same as AMAL-MW, except sub-
stitute DBEST for DMWEST 1n step (¢)

(3) BCV-MW:

(2) Substitute M, for m,, 1n cqgs. (25) and
(26) and the defimtions of B, and C,.

(b) Substitute the DMWEST estmator of A
for A 1n eqs. (25) and (26) and the defini-
uons of B, and C,.

(c) Solve eqs (25) and (26) for A and A using
w,= {1 1f coordinate ; has least sample
CV, 0 otherwise}, resulting in estimators A
and A. respectively

(4) BCV-BP. Samc as BCV-MW, except sub-
stitute DBEST for DMWEST 1n step (b)
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TABLE2 Primary results of the simulation study — per-
Estimatioa of souroe contrid P formance of the esti as ed by medi

Modian 2nd 90F absolute devaatioas of estimares from Efal

A=10

Paramxter Median distance froem Efa)

valae

A A Aral- Amal- BCV- BCV-
Mw BP MW BP

3 5 0198 0199 0220 0241

2 3 0536 0504 0478 G4amy
)] 067 0663 0468 0311

90% dustance from Efa)
Ama-  Amal-  BCV-  BCV-

w

and 90% deviation from true values — are sum-
marized in Table 2. For many scenarios the per-
formance of the estimators was virtually indis-
tinguishable, although relative performance of the
BCV estimators to the AMAL estimators seemed
to improve as the estimation scenario worsened.
All of the funci i d Ela) r bly
well in the case A = 100, with only slight decreases
in performance (especially from the BCV estima-
tors) as the parameterization favorability de-
creased. Both estimators performed badly in the

MW BP MW BP
4 s 0346 (L2 0745 0953
T @ 200 1% 0% 02 TABLE 3
1 s nm 13 128 117
E: of location p
3-10 Euchidean & to d location from &
Parameter Madian distance from Efa]
value A=10
Ad Amak ';m" BCV-  BCV- Parameter  Median distance from
MW P Mw  BP value (0.005,0.1,02,04,025)
4 s 0.0 0041 0031 003 ..
A A Amal- Amal- BCV- BCV-
2 3 000 0069 0091 0089 M . aw  Bp
M $ 0105 0111 0068 0061
4 H 0018 0076 0050 0093

90% distance from E[a]
Amal- Amal- BCV- BCV-
MW BP MW BP

4 $ 0169 0194 0117 0121

2 4 0263 o213 0300 0250
1 N 0350 0321 0162 0162

Parameter value 2% tnmmed mean of £[a] esimates

Ay a Ela] Amal-  Amal- BCV- BCV-
MW BP MW BP

10 02 0070 0025 -0047 -0116
100 02 0193 0193 a2 0221
16 05 —0066 0101 0105 0188
100 05 0518 0523 0.564 0551
10 08 0347 0236 0536 0459
100 08 07712 0833 0789 0750

(SR N SN
[V NNV )

_ In each case, having produced estimators X and
Aof A and A, we esumate E{aj by
f.=1-(A/R)

and 8 by

G=MA/A+x

where M, = (M,y,..., M,,)".

0224 0217 0198 0197
s 0312 0317 034 0293

90% distance from (0,005,61.02,04,025}

Amal- Amal- BCV- BCV-
MW BP MW BP

4 s 0.150 0120 0255 0432
2 4 0526 0589 0354 0512
1 5 0440 0556 03880 115

-
&

A=100

Parameter  Median distance from

value {0.005,01,02,043,025}

A A Amal- Amal- BCV. MCV-
MW BP MW BP

4 N 0020 0020 0020 0020

2 4 0057 0057 0076 0082

1 5 0195 0168 0137 0136
90% distance from {0,005,01,02,04,025)
Amal- Amal- BCV- BCV-
MW BP MW BP

4 s o111 0132 0030 0080

2 4 0346 0333 0410 0430

1 s 104 1712 0.598 0614

P~
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case A = 10; indeed, only in the most favorable (i)
scenario di2 esti pproach being passabl
which is not surprising given the severity of the
error.

For each estimator it is useful to know not only
how much i, vanes about Efa) but also whether

fi, tends to or underesti Ela).
Perhaos the most common measure of the tend-
ency to i or underesti is bias

(E[&,) - E[a]). which we could estimate by tak-
g the average of the f, values generated in each
100-rephcation simulation of a parameter scenano
and subtracting the comresponding Efa] values.
The sample averages of the f, estimates turned
out to be highly unstable, however, invariably
because of one or two outlandish observations.
Instead. we gne mn Table 2 the 2% tnmmed mean
of the i, values — the average of the 96 central
values — for each esti and p

scenano. (In other words, we discarded the two
greatest and the two least estimates and took the
average of the remaming values.) For A =10, the
estimators all have a severe tendency to under-
estimate E{a). For A = 100, on the other hand, the
estimators exhibited only mild and somewhat

TABLE 4
Esumauon of E[a]
Quail Roost il Data Set 1

sporadic bias. In fact, at least one estimator had
2% trimmed mean bias Jess than 0.02 in each
parameter scenano. Because of therr ratio form,
the i, estimators will be biased for most parame-
ter scenarios, but this bias does not appear to be
serious when measurement error is not 100 severe.

Median and 90% distance of estimated source
profiles from the true source profile, 8, are given
in Table 3. Although these results should conform
generally to results for estimating E{«], it is inter-
esting fo note that the AMAL estimators per-
formed relatively better than one would expect
from that criterion alone. All estimators reflect the
increasing difficulty of estimation with worsening
of parameter scenario.

Application 10 d source appor data

Curne et al. [14] describe the generation of
three simulated data sets which were made availa-
ble to participants of the Mathemaucal and Em-
pinical Receptor Models Workshop (Quail Roost
1) Each was constructed from reported source
profiles and real meteorological data from St.
Lows over a 40-day period i 1976. We sum-

Esumator Known source
Road Steel Coat Wood
True value, Efa) 0172 0002 0063 0102
Estumate # standard deviation
AMAL-MW 0143 £ 0041 0016 20017 004240026 03144711
AMAL-BP 014340046 001720026 0036 £ 0087 0556 + 33.9
BCV-MW 0.163 40372 009510073 0128£0324 0238+ 0069
BCV-BP 016340314 009510073 0122 £0430 0237+ 0066
95% Confidence intervat
AMAL-MW (0084,0248) (0008, 0031) (0023,0442) (%)}
AMAL-BP (0085,0252) (0009,0351) (0011,0122) ©0179,1)
BCV-MW (0,0245) (0082.0379) (0034,0216) (0144,0426)
BCV-BP (008”% v 316) ©,015) (0,0213) (0141,0402)
Distance between estimated location, true 8
AMAL-MW 0034 0009 0012 0262
AMAL-BP 0034 0008 0013 03886
BCV-MW 0025 0034 0032 0146
BCV-BP 0025 0034 0030 0144
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Fig. 2 Quail roost data ‘Ambient’ proportional data are

represented by arcles, with stlicon component plotted against

a carbon p Squares rep ponding values

for proportional profiles of known sources.

marize here the performance of our

the other 1wo cases. The algorithm does, in fact,
appear to estimate the average composite profile
as the location parameter, 8. Fig. 2 may cast some
light on the behavior of the estimates. The road
parameter is on the ‘edge’ of and 1n line with the
bulk of the data, almost as if it were one of two
contributing sources, Steel and coal, in the center
of the data, appear to be ‘in between® other
sources, and nenther is in line with the data. One
would not expect to estimate either one as well as
road. Wood, finally, is extremely far from the
observed data, which would certainly be expected
10 cause problems. Estimates of ‘A’ also shed some
Iight on the situation; for road and steel, all est-
mates were large and stable (> 1000 t the case of
road). In the case of wood. especially, estimates
were unstable, perhaps an indication that model
assumptions are in severe violation (Recall that
the simulated errors are additive and Gaussian

estimators on the first of the data sets, which was
based on eight source profiles and observations
contaminated by normal error. For each of the
source profiles coal, road, steel, and wood. we
fixed one profile as ‘known’ and attempted to
estimate its influence with respect to the rest,
which were aggregated as descnibed below and
treated as a single unknown. Since the ‘unknown’
1s really known, we can test how well our method-
ology estimates 1t. Eighteen chenucal species were
used to define proportions — all of the species
from which profiles were constracted m ref. 14
with the exception of As and CC (contemporary
carbon)

Results a.. summanzed in Table 4. Standard
errors and confrdence intervals were determined
by bootstrap methods (1000 resampling reph-
cations) described by Efron {15,16] Actual values
of source contnbutions and, therefors, of the «,
values are given 1n ref 14; E{a] is taken to be the
sample average of the a, values. 8 1s obviously
not, 1n fact, a constant parameter However, using
actual source contributions, onc may calculate a
composite source profile for each day The *actual
valuc® of @ is taken to be the average of the daily
compostte profiles.

Esumation of E[a} ranged from excellent in
the best case (‘road’) to poor in the worst case
(‘wood’), with rcasonable estimates resulting in

rather than from our Dinchlet model.) It 1s reas-
sunng to notice that bootstrap standard errors
and intervals identsfy the poor estimators as being
unrehable.

In addition, we attempted to estimate tradi-
tional CMB parameters using the pnncples out-
fined 1n the section on the CMB model, above.
The most simple transformation to the CMB model
may be carned out by substituting observed am-
bient mass profiles, S,, for s, and an estimated
source profile, §, for 6 above and solving the
approprate equations When the dimension of the
observations ts greater than the number of sources,
as 1s the case here, one may select a subset of the
eqs (5) and (6) to determne the parameters In an
attempt to base as many cquations on ‘Anown’
data as possible, we chose to use all of the eqs (5)
and all of the cqs (6) based on the ‘known’ source
profile. Only one equation remamed to rdentfy
the parameters, we chose the equation from (6)
based on the components of the unknown profile
for which observed CV was smallest and second-
smallest Using this method, we were able to
estimate the total source contnibutions for ‘road’
quite adequately, indeed, with one exception, we
were able to estimate contributions to within a
factor of 2 whenever road accounted for more
than 0.6% of the total mass. (The exception was
within a factor of 3, and estmated values were




B Onginal Research Paper

183

generally much closer to true values than a factor
of 2 when road accounted for more than 5% of
total mass.) Estimation of total source contribu-
tions for the other profiles was much less success-
ful. The fact that the composite of the remaimng
sources behaved very much lhike a single, second
source in the case of road whereas it did not in the
other cases accounts for much of this effect. How-
ever, estimation of total source contributions in
this manner will be difficult whenever measure-
ment error 15 severe enough to push a sizeable
number of the observations ‘beyond’ the profiles
x and @ in the sense descnibed in the section on
nonparametric models with measurement error,
above.

CONCLUSION

Linutattons of standard CMB models led us to
mtroduce SASU models — source apportionment
with one source unhnown In this paper, we have
constdered the case of one source known and one
source unknown. Inherent to this situation are at
least two interesting statistical problems estima-
tion of a structural parameter in the presence of
nfinitely many incidental parameters and estima-
tion of a parameter whuch 1s not, in general, 1den-
tiftable. The latter problem is easily addressed in
the case of no measurement error by requining
that the unknown source ts a support boundary
(which 1s eventually attamned) of the observation
distributton In the case of measurement error, 1t
would appear that deconvolution methods are re-
quired in order to 1dentify the unknown source n
a completely nonparametnic model. We have be-
gun research in this area, but more work 1s needed
before making recommendations.

Parametric models may present a reasonable,
practical alternative to the nonparametric ap-
proach The Dinchlet model examimned appears
promising, as an added benefit, 1t 15 eastly gener-
alizable to the case when there 1s more than one
known source A number of issues need to be
considered, however Given model (14), the source
contribution parameters X and A not only iden-
ufy E{a) but all higher moments and, indeed, the
exact shape of the distribution of a. The role of

the individual parameters A and A if observations
do not satisfy ¢q. (14) 15 unclear. For the Quail
Roost data, the magnitudes of best-CV estimates
of A and A appeared ble, but Ig;

tion ) d to und the mag-
nitude quite severely. Research into this phenome-
non 1s necessary. Study of sensivity to model
assumptions 1s needed, n general. Modifications
of the model may be warranted — for example,
allowing A to vary erther with time or with chem-
ical species. Alterna:. to moments estimates,
such as maximum likelihood estimates, should be
available given enough computing power. How-
ever, computation of maximum hkelthood estima-
tors requires accurate estimators as starting values,
so the method of moments estimators should be
useful even if maximum hkelthood estimators
prove to be supenor. Fnally, other parametric
models should be investigated.

The question of how best to transform from the
SASU model to the sta.dard CMB model when
enough data are available to do so remains open.
One may always substitute observed ambient air
mass profiles, S,, for 5, and an estmated source
profile, 0., for 8. However, the presence of mea-
surement error guarantees that the resulting esti-
mates will not be consistent. We will continue to
mvestigate this question.

A complete approach to the SASU problem
will eventually require in on of ous
complications to the model, including the case
when the x, values are measured with error and
the case when observations are correlated. One
mught Iike to include observable covanates such as
weather or seasonal vanables in a reasonable
model, Estimation in the case of more than one
known source presents an interesting problem as
well. While some analog of eq. (9) 1s probably
necessary in order to tdentify the problem [a Di-
nichlet model imposes eq (9) naturally], the geo-
metric nature of the problem 1s somewhat differ-
ent than in the one-source-known case Rescarch
into these 1ssues 1s underway.

When the unknown ‘source’ 1s actually an ag-
gregate of several unknown sources, then 1t 1s
questionable whether one should model its profile
8 as fixed Instead, one might model 4, the un-
known profile at time ¢, as a stochastic process,

P
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aither stationary or with a time trend depending
upon the nature of the unknown sources. In some
situations it would be sensible to model §, as
depending on a covariate.
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Dep of Ch ry, Clarkson Ut

An mmtial remark we would Iike to make 15 to
note the interest i the receptor modehng problem
by statisucians. This paper along with the one
elsewhere in these proceedings by L. Gleser pro-
vide some of the first efforts to explore the recep-
tor modeling problem as a statisucal problem. We
think that there are a number of interesting aspects
to this particular form of the mixture resolution
problem because of the lack of constancy in the
source profiles and the errors in the sampling and
analyses that makc receptor modehng different
from muxture resolution using spectrometric data
Thus we welcome more statistical mputs and n-
sighty into the exploration of sources of airborne
pollutants.

The next aspect of this paper that needs to be
discussed s that of facilitated communication. It
1s clear from the paper that receptor modelers
have not defined their terminology suffictently
clearly such that people entening the field can
immediately adopt our jargon. The paper suggests
that the problem they are solving is that of the
chemical mass balance (CMB) However, as this
term 1s commonly used within the receptor model-
Ing community, 1t refers to the resolution of a
single sample 1nto 1ts components based on a set
of source profiles that are known a prion In the
approach outhined here, a number of samples are
used to deduce the profile of the ‘unknown’ source
when one or more profiles are known and then
obtain the mass contributions of the known
sources This method requinng multiple samples

then falls into the muluivanate methods category
as outlined by Cooper and Watson [1] As such, it
seems that this new method should be compared
with other methods that attempt to deduce source
profiles including absolute principal components
analysis [2], target transformation factor analysis
(TTFA) (3] and SAFER (4}

The model presented in this paper suffers from
the need for a basic assumption that the ‘un-
known’ source 1s constant in composition How-
ever, if the ‘unknown’ source 1s really a combina-
tion of sources, then it 1s unlikely that this as-
sumption will be valid In a complex, urban
awrshed, wind direction shifts can drastically alter
the number and types of sources [S] and even at
more remote sites, there can be highly significant
seasonal vaniattons in composiiton of emissions
from vanous sources so that the applicability and
utility of this approach relative to the traditional
multvariate approaches 1s not at all clear.

Before getting into other more d-tailed com-
ments on the source apportionment with one
source unknown (SASU) methods, we would hke
to raise some other .ssues regarding communica-
tions. This paper 1s wntten by statisticians for
statisticians and has therefore been written in “sta-
ustics’. However, for us armchair statisticians, it
becomes very difficult to read and digest because
we first have to translate it from symbohc nota-
tions into terms we can follow. We realize that this
paper takes advantage of commonly (for the sta-
ustics hiterature) used symbols such as C, V, and
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[0. 1] We would suspect that most readers of this
Journal are not going to be able to casily follow
the arguments because they get lost in the sym-
bols, and we suggest that although it 1s cumber-
some to do so, these symbols should generally be
avoided in papers that are wntten for non-statist-
crans to read,

We also would urge that theorems, propositions
and the hkes be relegated to Appendices rather
than breaking the flow of the reasoning in the
text. We recognize the heresy of this proposal, but
offer it notwithstanding n order to improve com-
munications to the non-statistician

There are a number of other aspects of this
paper that we would hke to discuss The authors
suggest the CMB model cannot deal with time
varying source contributions. CMB analysis does
not deal with time vanation at all because 1t 1s
performed on only one sample. Time vanations in
source contributions «.ould only be found by per-
formung a senes of CMB analyses on a sequence
of samples. Time vanation in the source profiles 1s
normally not incorporated because multiple source
samples are not often taken at the same time as
the ambient samples However, only the financial
and access constraint that often plague field stud-
1es preclude the incorporation of time vanation of
the suarce profiles in the CMB calculations. An
alternative approach to Incorporate systematic
time variations would be to use Kalman filtening
It would appear feasible to utihze this method to
take such time vanation mto account. Although 1t
has not yet been studied m the context of the
receptor modeling problem, the Kalman filter ap-
pears to be a method worthy of further explora-
ton.

There 15 a statement that the use of additive,
Gaussian error structures may be a hmitation to a
CMB analysis because the observations should be
non-negative and may be constramned as when the
measurements are proportions summing to one
One of the continuing problems in air quality data
handling 1s that of the compulsion to left truncate
data Most of our chemmcal analytical methods
have demonstrably symmetnc error bands on the
results even if the errors are not truly Gaussian
For many arborne particle analyses based on
photon spectroscopy such as neutron activation or

X-ray fluorescence, we know that the count data
on whech the concentrattons are deterrmined have
a Poisson distnbution and the addivity of the
uncertainties can be exphatly calculated. Thus, 1t
is certamly possible that if the sample does not
contain the analyte of interest, a measured value
less than zero s a valid result. Too many people
will then set the value to zero because of therr
misunderstanding of the effects of the measure-
ment crror. Thus, some of the starting premuses of
this work seem to be in crror.

In the non-parametric model, they suggest that
i the Iimat of sufficiently large numbers of sam-
ples bemng taken and analyzed, there will be one
that will be composed almost entirely of the species
contributed by the ‘unknown’ source This as-
sumption agamn raises the problem of the con-
stancy of the mixture of unknown sources that
constitute the ‘unknown’ source Although the
wood stove would not be burned in the summer,
there may be other sources that are on in the
summer but not in the winter. The real situation 1s
not likely to be as simple as portrayed here.

it also appears that it 1s necessary to know the
probability distnbution of the ‘unknown’ source
contnibutions G(«). It has not yet been done for
any source to the extent that the distnbution of
values 1s known Thus, at this tme, this approach
does not appear to provide practical help to the
receptor modeler particularly in hight of the other
problems that arise when measurement error 1s
mtroduced mnto the model.

One of the problems with the use of propor-
tional data 1s that ultimately the results will need
to be back transformed into absolute concentra-
tons (pg/m’*) to be used by air quality managers.
It will be necessary to provide a method to give
such values with associated error bounds if the
method 1s to be apphed to real air quality manage-
ment problems

In the parametric model studies, the sumulated
data were assumed to have tdenucal and constant
errors for all chemical species from all of the
sources The authors note this 1s unrealisic We
would encourage further study with more reahstic
error structures so that any possible points at
which the analysis shows problems can be wdenu-
fied.
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Fally in the analysis of the Quail Roost It
data set, it is interesting that SASU was able to
estimate the STEEL source even though it was
well below the ‘detection himuts’ as defined by
Curne et al. [6] It seems surprising that “WOOD”
was so poorly estimated as 1t could be found
relatively well using the other multivartate meth-
ods [6] It would be iteresing to know 1if the
choices of St and C are umque i showing the
results presented 1in Fig. 2 or whether there are
other pairs of vanables that show the same pat-
tern. The results on the Quail Roost data also
suggest that the Dirichlet distnbution was not a
very good representation of the needed distribu-
tron for these data sets. Since these sets are based
on a reasonably reahstic data generation model, it
suggests that there 15 a need to explore other
distributions beside the Dinchlet to find one that
better represents air quahty data distributions

In concluston, we welcome the increased input
of staustictans mto the receptor modeling feld
We hope that we can open hnes of communica-
tons so that the problems examned can better
relate to actual receptor modehing problems and
ask the indulgence of the statistics commemty to
be patient with those of us who are not fluent 1n
symbohc logic symbols and thus find great diffi-

culty n reading and understanding the work that
is being presented
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Abstract
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A number of mathematal approaches that are currently of interest in theoretical combustion are briefly described These are (1)
activation energy asymptotics — flame-sheets and hot-spots, {2) bifurcations and routes to chaos, (3) turbulent premixed flames —
fractals and renormalization, (4) reduced chemustry and rate-ratio asymptotcs, {(5) nonhinear high-frequency acoustics and

combustion

PROLOGUE

With rare exceptions, combustion 1s flud
mechanics with the addition of highly exothermuc,
temperature-sensitive chemical reaction Progress
1n combustion theory has therefore been closely
linked to tools that have been developed to deal
with the reaction terms, and this 1s apparent in the
topics discussed here. Section 1 briefly describes a
successful asymptotic treatment based on the 1dea
of extreme sensitivaty of the reaction rate to tem-
perature vanations This can lead to flamesheet
models 1n which reaction 1s confined to thin layers,
and this provides a powerful tool for examning
flame stability, the subject of Section 2. At high
Reynolds numbers the role of chemustry 1s reduced
to generating a hydrodynanmuc flame, a tempera-
ture aad density discontinuity separating two in-
viscid flow fields (Sectron 3). More subtle aspects
of the chemical kinetics play a role n Section 4,
which describes a rational procedure for reducing

0169-7439/91 /803 50 © 1991 - Elsevier Sorene, ™blishers BV

complex kinetic systems to reduced sets involving
three or four reaction steps. Our discussion con-
cludes mn Sectton 5 with the interaction of high
frequency acoustic waves and a cembustion field.
Of paruicular interest 15 the fact that a small-am-
plitude nonlinear persodic wavetrain can accel-
erate a temperature-sensitive reaction

1 ACTIVATION ENERGY ASYMPTOTICS — FLAME-
SHEETS AND HOT-SPOTS

It 1s commonplace i combustion theory to
adopt a simple one-step kmeuc model char-
acterized by Arrhemus kmetics For premixed
flames this might have the form

mixture = products
at u rate

Q=DYe ¥ (1.1)
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Te

Fig 1 Flame-sheet separaung two regions of frozen flow, This
15 typical of the structure seen in diffusion flames (1]

where Y 1s the mixture fraction, 7' the tempera-
ture; for dffusion flames,

fuel + oxygen - products
at a rate
Q=DXYe T 12)

where X (Y') 1s the oxygen (fuel) mass fraction 6
is a nondimenstonal activation energy or activa-
tion temperature.

Asymptotic treatments are possible n the limit
8- oo and have proven to be of great value mn
cluctdating a wide range of combustion phenoni-
ena {1-3] For some problems the asymptotics
lead to flame-sheets, thin regions in which there 1s
a balance between diffusion and reaction; beyond
the flame-sheet reaction is negligible. This comes
about by considering the distinguished limit

D-r0, §=¢0, D=e”T, Tx fixed (1.3)

This immediately leads to a partition of the flow-
field into regions where T<T* so that =0
(frozen chemistry), and regions where T> T'* so

eg. Fig 1. These flame-sheet structures are well
understood and the approach 1s a well established
and proven tool

A quite different class of problems volves
hot-spot formation and igmtion Constder the fol-
lowmg simple model for homogeneous thermal
ignition,
dT/dt=e™T,  T(0) =T, (1.5)
Adopting the ansatz

Ta To(1+%¢+...) (1.6)

the perturbation function ¢ sausfies the mmtial-
value problem

do/dr=e®, $(0)=0 1.7)
where 7 15 a scaled tme This has solution
¢ —In(l~7) (1.8)

valid for 0 <7<1. Thermal runaway occurs at
7=1. In nonhomogeneous problems, runaway 1s
confined to a small region called a hot-spot. A
well-known example occurs mn a certain type of
deflagration-to-detonation transition {4] A weak
shock 1s generated by the accelerating flame, and
in the shocked gas a hot-spot forms and gives nse
to an expanding shock which interacts wath, and
remnforces, the lead shock (Fig. 2).

that Y=0 or XY =0 (equilibrium ch y),
and agan Q-0 for the irreversible kinetics of
¢gs. (1.1) and (1.2) *.

The thin reaction zone or flame-sheet is char-
actenzed by

Te T + 0(1/0) (1.4)

* In a special but important case, the plane deflagrauon, an

1 deod '

region of eq gas exists where Tw T,

/)

(

Fig 2 Hot-spot K and of a shock 1n de-
fl to-d ( based on plate 5 of

ref 4)

PO -
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0
Xe0X1S

Fig. 3 Pressure distnbution at different times 1n an intenor
hot-spot. From ref 5 with permssion

Only recently have these hot-spots been
analyzed for a compressible gas, and Fig. 3 shows
the early pressure rise for an intenor hot-spot one
not next to a wall) [5]. Density changes are shown
tn Fig. 4; the process 1s so rapid that no signifi-
cant mass flux can occur, and these changes are
small (inertial confinement). Recent efforts have
been concerned with the consequences of hot-spot
formation (6,7),

0
X=AX1S

Fig. 4 Density distnbution at different umes 1n an intenor
hot-spot From ref 5 wath permussion

2 BIFURCATIONS AND ROUTES TO CHAOS

The constant density model for premixed flames
can take the form (see ref. 2, p. 25):

oT Y 1
—ﬁ-AT-f' Q, Friali AY=-Q 1)

with @ given by eq. (1.1). Here Le 1s the Lewis
number and values of Le different from 1 can give
nise to Turing instabilities {8].

As noted in Section 1, in the limt § - o
reaction is confined to a thin flame sheet, Indeed,
for deflagrations that are nominally plane and
adiabatic, @ behaves hike a Dirac §-funcuon of
strength ~ e™%27* where 7'+ 15 the flame tem-
perature. It 1s then not difficult to construct a
stationary solution (unchanging flame propa-
gation), whose linear stability can be explored
using a modal analysis If the flame-sheet dis-
placement 1§

Xpm =Wt +ee™ ™, =0 (2:2)

where the unperturbed flame propagates to the
left at the adiabatic flame speed, the stability
diagram Fig. 5 can be constructed {39}.

In the neighborhood of P long wavelength
disturbances grow very slowly and weak nonlin-
eanties can be incorporated into the analysis by
means of a bifurcation analysis. In this way the
Kuramoto-Sivashinsky equation can be denved
[10) for ¢ ~ x, -+ W, 4t, and when corrugations n
the z direction are also adimtted this is

o+ H(Ve) = v -4 vy 2
k
as0 Stadle osie
Unstadle
Unstable
s anle
P O(Le D)

Fig 5 Stability boundanes in the wavenumber-scaled Lewis
number plane
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Fig. 6. Numerical solution of the Kuramoto-Sivashinsky equa-
tion, From ref 2

The first term on the right is viscous-hike with a
negative viscosity coefficient and 1s strongly de-
stabilzing; wie ¥* term stabilizes short waves.
Numerical simulations show that the ﬂame-sheel
adopts an irregular, dy, cellular c a-
tion (Fig. 6). Physical flames in mixtures “with
Le <1 can display similar behavior (Fig. 7) (11)
(see also ref. 1, p. 194).

Fig. 5 shows the stability boundaries for an
unbounded flame. If we consider flames that are
attached to burners, accounting for the heat {lux
to the burner, the left stability boundary is mod-
ified (Fig. 8). If at the same time the burner
geometry restricts the wave number & to discrete
values, discrete points on this boundary are de-
fined, each of which is a potential bifurcation
point from which can spring a nonplanar solution.
These vanous solutions can interact (¢.g. bimodal
bifurcations) and display tcresting dynamical
behavior. Analysis (12-14] can explain the behav-
tor of polyhedral flames, multiple-sided flames
C seen on B burners (Fig. 9). These
are sometumes stationary, somctimes they spin,
and the number of sides can be changed by vary-
mg the combustion parameters (mass flow-rate,
mixture strength).

The nght stability boundary of Fig. 5 1s rela-
tively inaccessible to physical mixtures but has a
counterpart i the analysis of thermites, which are
solids that burn to form solids and so have Le =
0. In the k-8 plane (¢ 1s no longer asymptoti-
cally large [15]), and again with X restricted to
discrete values, possible bifurcation points are
identified in Fig. 10).

Fig. 7 Ceilular flames, courtesy of M. Gorman {11). An cptical
Wllusion can imake these look like hiquid drops on the underside
of a plate, with the white regions corresponding to convex
surfaces, In fact these are top views of the flame with concave
or cup-like white regions, each cup baing surrounded by a
multiple-sided sharp ndge As with many optical iHusions,
persistence will cause the image to *flip*

8imogal
difurcation
Fig 8 Modification of the left stability boundary of Fig. § by
keat losses, showing possible bifurcation points when & o
restncted to discrete values

o(Le))
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Fig 10, Possible bif ponts ponding to planar

corrugations of thermute flames, A simular figure can be con-

structed for ¢ylindncal 1
Fig 9 Polyhedral lame A cartoon based on a photograph or eyindneal goometry

ref 1

from those of Fig 11 and apparently displays

chaotic behavior,

A nch dynamuc structure 1s associated with

bifurcations frem the right stabiity boundarics 2 TURBULENT PREMIXED FLAMES - FRACTALS AND

[16-18]. Fig. 11 shows variations of the flame RENORMALIZATION
speed with time for a problem discussed in ref, 18

and exhibits 2 — T penodic behavior. Fig. 12 cor- Fig. 13 shows premixed flame images obtamed
responds to shghtly different paramcter values 1 a laboratory engine at Pnnceton Umversity

lambdaz 559500

O

-
a
790 25 80 75 we 123 uo 15 20 :s 2o 15 350 38 380 308 40

TIME
Fig 11 Flame {ront v Jocty vs. ime in thermute burming, From ref 18 with permussion Thus displays 27 penodic behavior
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. lambda = 603000

T
E

§

3

s

T T Y Y T T T Y
00 20 400 0 &0 1000 100 00 9500
TIME

Y Y Y Y 1
1800 2000 2200 2400 2600

Fig 12 Flame front velocity vs. ime 1n thermute burning. From ref 18 wath permussion This appears to display chaotic behavior

[19,20}; the flame 1s the boundary between the
products (white) and the reactants (black) These
wmages are typical of turbulent flames, and one
may ask whether or not the flame is a fractal

surface, To answer this question 1t Is necessary to
measure the surface area using ‘rulers’ of different
size, plotung the area vs. the ‘ruler’ length on a
log-log plot (Fig. 14). Between large- and small-

Fig. 13. Flame images in an internal combustion engine at 2400 rpm, From ref. 19 with permusston The equivalence ratios are 09,

03,07 (top 10 bottom).
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scale cutoffs, a fractal surface 1s characterized by a
straight line of slope (2= D), 2< D <3, where D
is the fractal dimension. Note that fractal behavior
is only observed over a 1-decade range of length
scales, and this may be too small for the concept
to be of value.

Turbulent flames travel faster (W) than
laminar flames (W,,.,) because of the enhanced
average burning area generated by the wrnkling.
Discarding other effects (e 8. flame-stretch, ref, 1,
p. 146),

_‘..K_'"ng!.:(l‘_')z_p 3.1
,th AO >‘0 ’

(see Fig. 14), and Gouldin (22] has used this 1dea
to predict turbulent flame speed as a function of
wrbulent intensity, Fig. 15 shows some of his
results For other mixtures the agreement 15 not as
good; moreover Gouldins choice of A, (the
Kolmogoroff length scale) has been questioned
(23], Nevertheless, the agreement 18 encouraging.

Some related mathematical treatments have
dealt with the kinematic flame equation

%§-+(a-€z)0=w.,m|€zcx 3.2)

which governs a scalar function G(X, 1) where the
surface G = 0 represents the flame. This surface is
convected by the flow field & and propagates
relative to the flwd at the laminar flame speed.
Given a turbulent flow & we can ask what turbu-

Jemmmmmn -

Ao farmew

Swabaca Largesoom
Taarr st puriporoe Scate
N Y

Fig. 14, Area vs. scale for a fractal surface. The data ponts are
b d from ref. 21, ponding 10 a tube-b flame.

18
Experiment
16} CH 4= At
¢=10; aful=45(um) HModel
-
1 P
-
2
ulNO
104
st
63
al f 1 2 T .
10 20 _’30 AD
R‘x10
2 X . . h : 2
0 A 0 30
u'ly

Fig 15 Turbulent flame-speed vs tutbulent intensity From
ref 22 wath permission

lent flame speed will be predicted by this equation
[24-26).

The turbulent field 15 characterized by a wide
range of scales {1} where fo>1> 1, (outer and
inner cut-offs), and v.< define

G(h) =(G(x0), (3.3

the average of G over all length scales Iy > I>1,.
Similanty on the different length scales mplies
that
aG(h) | . . "
T (3(1)- 9 )G (1) = Wun(h) 19G{4)|

(34)
where W, (4y) 15 a “partial’ turbufent flame-speed
associated with wrinkling on the scales smaller
than J,. By definition
Won(h) ~» Wun ash =l (3.9
so that W, can be calculated if the averaging

procedure leading to ¢q. (3.4) can be carried out.
Existing analyses yield (1bid.)

‘Pmrb ~ Uy (3-6)

o e e\ - e
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Fig 16 Calulated structure of a wet CO flame usmng the
complete mechanism and the short mechanism From ref 27
with permission

or
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DU (L 37
tud ~ Hyms {111 W

4 REDUCED CHEMISTRY AND RATE~RATIO ASYMP-
TOTICS

The chenustry of physical flames 1s extremely
complicated, presenting an insurmountable ob-
stacle to analysis and a severe challenge to
numerical simulations unless substantial simplifi-
cations are introduced. Consider, for example, wet
CO flames [27). A complete description of the
hnetics involves 67 steps with rates charactenzed
by 162 nonzero parameters and a commensurate
number of reactants. Even after unimportant reac-
tions are discarded, 21 steps remain governing 10
species. (The accuracy of such short mechanisms
can be checked by comparing the flame structures
they yield with exact calculations, Fig. 16). Clearly
additional simplification is necessary and two sim-
ple 1deas play an important role in this connec-
tion: the steady-state approximation for an inter-
mediate and the quast-equilibrium approximation
for a reaction,

Consider the tth species. Its variation due to
reaction can be written in the form
de,

T Wy —w (4.)

where w* refers to the positive contnibution from
the vanous reactions (production) and w,” refers
to the negative contnbution (consumption). The
steady state approximation, valid if ¢, is small
compared to each term on the right, 1s

who=w” (4.2)
If we just examine the change 1n ¢, due to the jth
reaction, then

de,

'd_t-l,mk/;_k': (4.3)

where k, (k,) 1s the forward (reverse) reaction
rate, and the quasi-equilibrium approximation 1s

ki =k, (4.4)
When these approximations are correctly apphed,
substantial simphfication 1s possible and yet rea-
sonable accuracy 1s maintained. As an example,
for stoichiometric methane/air flames a four-step
scheme can be deduced [28],

CH, + 0, £ Co,+ H, + H,0

CO + H,0 « CO, + H,

0, +2H, £ 21,0 49

Additional approximations are sometimes pos-
sible permatting analytical treatment of flame-
structure. Thus, 1n eq (4.5), k; < k;, so that we
can define the parameter

b= = 46)

e 1) preheatzone >

=t e (X3) fuel consumption tayer
ciy

) 1

hg 17. ple of a

P ansing from
rate=ratto asymptotics After a figure i ref. 28,

P~ .
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and examune the Iimit 8 —» 0 (rate-ratio asymp-
totics). In this hmit the fuel-consumption layer 1s
of vamshing thickness and its structure can be
analyzed using the ansatz

x=0(8), [CH),=0, T=T,+0(3),
=G, +0(8) @7)

(see Fig. 17) Further details may be found in ref,
28.

S NONLINEAR HIGH-FREQUENCY ACOUSTICS AND
COMBUSTION

Auto-ignition 1s important in many combustion
problems. In Section 1 we indicated the role that it
can play m one type of deflagration-to-detonation
transitton, and 1t 1s central to engine knock m
which point ignition occurs ahead of the primary
flame front. High-frequency waves (generated by
turbulence or inhomogeneties) might have a sig-
miftcant mmpact on this process, and recently there
have been some interesting extensions of nonlin-
ear lugh-frequency acoustic theory to the problem
of propagation through reacting gases [29,30).

A penodic sound wave propagating to the night
through a umform ume-ndependent medium
(constant background) 1s descnbed by

e o e T YT 0 0) 4 L (5.1)
u="(p,0,5,Y)

(p = density, v = veloaty, S = entropy, Y = mass
fraction, \/%" =speed of sound, ( ¥ = back-
ground).

If, mstead, the background 1s homogeneous but
nonconstant, corresponding to a homogeneous ex-
plosion, so that

1 drH dart

oo ar = A =Y (52)

[ef. ¢q. (1.5), an early-time approximation vahd
when reactant depletion can be neglected], then
we adopt the ansatz (30)

usut (o(x.t.%)r(l, VT ,0,0) + Euy+ .
(5.3)

for small-amplitude high-frequency waves. When
substituted into the governing equations, with at-
tention restricted to a single night-moving wave,
solutions o(x, 7, 8) valid as € = 0 satisfy

3 e
VT 22 a0 (5.4)

a0 Y woo  (vy+1) 5 do
o VT gt T VT ogg

ST L_ 3, (=DA
TR 2y T3 Ty )°

(55)
An appropriate solution of eq (5.4) 1s

¢=x—'/;'md$ (5.6)

and 1t may be noted that in the hmit ¢ —» 0, 79 —
0 (vantshing amplitude, constant background) the
solution

o=¢? (5.7)

recovers eq (51) with w=¢"'. The nonhnear
term in eq (5 5) will cause dissipation if (and only
1f) shocks form, but the term on the right can lead
to a growth in amphitude

Nonlinear feedback can occur, with the acous-
tic signal affecting the mean ficld (background) if
the actwvation energy 1s large and

€=0, A=, e fixed (5.8)

As an example, during the induction phase of an
explosion fwhen the ansatz (1.6) 1s valid}, and for
a left-moving wave {29},

X+

o, =5 (x.t) +0(f.x,0), 0= ~

= (r=1)5,+5,+85,)
2¢(8, = 8,,) = v(y = )3, = 2¢(5, + 35, )
= o (o107}
o= 0, ~2{(y+1)3, +(y =15+ (y~3)3 } o,
=11+ 1)@= geh (e = [T )
(5.9)

Here, all the perturbation quantities can be writ-
ten in terms of o), ; and 3 (¢ 8. S=¢5,); T, 15

et g e

e —-" [
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the perturbed mean field temperature, nonzero
because of the nonlinear feedback; and the aver-
age is taken over the & variable. Using these
equations it can be shown that ignition [i.e. ther-
mal runaway as identified with the result (1.8))
will oceur earlier because of the presence of the
acoustic wave.
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Abstract

Faeth G M, Kounalalus, M E and Swvathanu, Y R, 1931 Stochastic aspects of turbulent combust
Intelligent Laboratory Systems, 10+ 199210

processes Ch s and

Mcthods of using stochastic sumulations to treat nonhinear interactions in turbulent combustion processes are desenbed —
emphasizng the use of statistical time-senies techniyues to analyze the turbulence-radiation interactions of nonpremixed flames.
Three aspects of the problem are considered, as follows the stausties of scalar prop .es in turbulent flames, the formulation of
dlgonthms w simuiate flame radiation based on flame statisties, and evaluation of the methodulogy using revent measurements for
nonlumaniy flames It ws chown that the process becomes tractable through the laminar flamelet approximation whereby all sealar
propertics are Laken o be solely functions of a conserved scalar like the muxture fraction Thus, the simulatons ate designed o
generate realizations of muxture fractions along radatton paths with the radition properties of each realization tound vsing a
nsirow-bond radution model An process that reprodeces probability density functions and spatial and temporal
wnielations of mxivie fractions was found o yield reasonably good predictions of the statistial propertics of spectral tadation
ntensitics medsured fo1 turbulent varbon monoxide and hydrogen jet flames burning n suli an- Although the approach appears o be

sdditional devel 15 needed in order to treat somae of the unique siatistinal featores of turbulence rhat are not

3 dunng uonal use of 1 hnig

INTRODUCTION

Stovhastic simulations are promising for treat-
ing a variety of nonlinear interactions in turbulent
{lows, Recent studies along these lines include the
turbulent dispersion of particles and bubbles [1-5],
«he motion and transport of drops i evaporating
and comt:usting sprays [6,7}, and the turbulence~
radiation interactions of nonpremixed flames 8-
13} The objective of the present paper 1s to de-
scnbe the application of this methodology to
processes encountered in turbulent combusting

0169-7439/91/503.50
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flows. In order to control the scope, the discusston

il focus on turbulence~radiation nteractions of
nonpremixed (diffusion} flames, since this prob-
lem involves the most significant features of sto-
chastic  simulations of turkulent combustion
processes,

Imtially, methods of simulatng turbulent
processes were relatively ad hoc [1,2), however,
more systematic techmques cutrently are being
emphasized. This includes full stochasuc simula-
tion of the turbulent field, along the lines of
Kraichnan [14], to study the turbulent dispesston
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of particles 1n an 1sotropic turbulent field {15}, and
adapting statistical ttme-series techmques, analo-
gous to methods descnbed by Box and Jenkins
{15], for problems of turbulent dispersion of par-
ticles [3,5] and turbulence-radiation interactions
[13) The present ciscussion will be hmited to
statistical time-senies techniques since they have
modest computational requirements and provide
reasonable flexibility for treating a variety of prac-
tical turbulent flows,

The mam reason for interest m turbulence-
rachation nteractions 1s that radration levels of
turbulent flames are generally higher (often 2-3
umes higher) than esttmates based on mean scalar
properties within the flames [8-12] The bias of
mean radiation levels 1s caused by nonlinear rela-
tionships between scalar and radiation properties
mn flames This preciudes averaging scalar proper-
ties first and then computing radiatior: properties,
nstead, the radiation properties of realizations of
the scalar field must be found fust and then
averaged Properties other than mean radiation
levels are aiso of interest, for example, fire and
flame detectors often use the temporal properties
of flame radiaton fluctuations to distingush
flames from background radiation. Furthermore,
maximum (rather than average) flame radiation
ievels provide the most comservative estimate of
flame radation properties for fire safety consider-
ations, Finally, studying the temporal properties
of radration fluctuations (moments, probability
density functions, and temporal power spectral
densities) provides information to better under-
stand turbulence~radiation interactions, analo-
gous to the mformation provided by he temporal
propertics of velocity and concentration fluctua-
tions to better understand turbulent mixing. Thus,
the general problem of turbulence-radiation inter-

actions imvolves both the mean and {1 ing

measurements from turbulent hydrogen and
carbon monoxide jet flames burning in still air

SCALAR PROPERTIES OF DIFFUSION FLAMES

Scalar property correlations

Assunung equal exchange coefficients of all
species and heat, neghgible effects of potential
and kmetic energles and radiation, and reaction
occurring at an infinitely-thin flame sheet, Burke
and Schumann [16] showed that scalar properties
m lammar nonprenuxed flames were functions
(called state relationships) of any one of a number
of conserved scalars. Although the formal require-
ments are rather restrictive, state relationships have
been found for many laminar flame systems and
are widely used for analysis of flame structure and
radiation properties The use of state relauonships
has also been extended to turbulent nonpremixed
flames, since they generally can be approximated
as wrinkled laminar flames The use of state rela-
tionships for turbulent nonpremuxed flames has
come to be called the conserved-scalar formahsm
under the laminar flamelet approximation {17,18).

Typical state relationshups are illustrated in Fig
1. This mvolves measurements of the concentra-
tions of mayor gas species and temperature, 7, for
radial traverses at varous heights, x, above a
burner having diameter, 4, as well as axal
traverses, within lamunar nonpremixed carbon
monoxide/air flames having various burner Rey-
nolds numbers, Re. In this case, the conserved
scalar is the local fuel-equivalence rano (the mass
fraction of fuel elements irrespective of species
divided by the stoichiometric mass fraction of fuel

1 ). Predictions based on the assumption of

radiation propetties of turbulent flames [11,12],
Staustical time-senies simulations of the radia-
tion propzrties of turbulent flames are based on
simulation of scalar properties within the flames.
Therefore, the paper begms with a description of
the statstics of scalar propertics n turbulent
flames, The formulation of typical stochastic
simulations 1s then considered. The paper con-
cludes with evaluation of the methodology using

local thermodynanuc equlibrium for an adiabatic
flame, using the Gordon and McBnde [19]) al-
gonthm, are also shown on the figure, Aside from
temperature (where radiative heat losses and er-
rors of uncerrected temperature measurements are
a factor) the d state relationships are seen
to be in excellent agreement with equmlibrium pre-
dictions, Thus, the tendency of reactive systems to
approach equilibnum provides a physical justifica-

o e e g e
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tion for the laminar flamelet approximation m this
instance.

State relationships for the concentrations of
major gas species and temperature, adequate for
estimates of structure and radiation propertics,

have been found from ts m I
flames for a variety of fuels burning n air: hydro-
gen [9,17], methane [18,20,21), propane [22]. n-
heptane [17.23], acetylene {11] and ethylene [10)
Hydrocarbons exhubit significant departures from
local thermodynamic equilibrum at fuel-rich con-
ditions due to effects of fintte-rate chemustry asso-
ciated with soot processes; however, these depar-
tures are stll relatively universal so that adequate
state relationstups are sull found except near
pomts of flame attachment. Finally, generahzed
state relationships have been found for hydro-
carbon/air flames so that tedious measurements
to find state relatronships for specific fuels can be
avoided (22],

Application of the conserved-scalar formalism
and the lammar flamelet approxmmation to find
the structure of turbulent flames has been rea-
sonably successful for virtually all the matenals
for which state relationships are available [8-
13,17,24,25] Recent studies also suggest that state
relationships for soot volume fractions, an ime
portant property for cstimates of continuum radi-
ation from soot, exist m turbulent flames having
sufficiently long restdence times {26,27), This ym-
pltes that scalar propertics needed to estimate
radiation are strongly correlated through their state
relationships and can be sunulated by simulating a
conserved-scalar alone

Mixture fraction statistics

Mixture fraction, f, defined as the fraction of
clemental mass that onginated from the fuel, 1s
the conserved scalar most commonly used to find
the scalar structure of turbulent nonpremuxed
flames. Turbulence models under the conserved-
scalar formalism are designed to provide estimates
of the mean value and varance of mixture frac-
tons [17,28}. Methods used to the other
statistical properties needed to simulate mixture
fraction distnbutions along radiation paths —
probability density functions and correlations —
will be considered 1n the following.

A fuel burning in air involves instantaneous
properties at any pomnt that can be pure air, pure
fuel or some muxture of the two with scalar prop-
erties given by the state relationships. Several
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probability density functions (PDFs) of mixture
fraction, P(f), have been proposed to accommo-
date these possibilities but the chipped-Gaussian
PDF has received the most attention {28). This
involves a Gaussian function defined in range
0 < f<1 with the tails of the distribution replaced
by Dirac delta functions at f=0 and 1 that have
weights equal to the probability of f<0Oand f>1
for the original Gaussian distribution, respec-
tively. Thus, the air intermittency of the flame at
any point, defined as the fraction of time spent in
ambient aur, is given by the weighted Dirac delta
function at f=0,

Recent measurements i noncombusting and
combusting turbulent flows suggest that the
clipped-Gaussian PDF of nuxture fraction 1s rea-
sonable [29,30]. Some typical results are rllustrated
n Fig. 2 for turbulent carbon monoxide jet flames
burning in still air. The measurements in the fig-
ure are futed with chipped-Gaussian PDFs having
the same mean values and varances Results are
shown for various radizl positions, 7, before and
after the flame up (x/d=230 and 50). The ar
mtermittency spike is promunent for these condie
tions but the fuel intermittency spike can only be
seen in the fitted PDFs near the axis at x/d = 30.
The mam deficiency of the chipped-Gaussian fits
1s that they fail to represent the broadened air
itermittency spike caused by direct mixing be-
tween turbulent fluid and air near the edge of the
flow (the air superlayer), A PDF having additional
moments 1s needed to correct this problem; how-
ever, the complication of fmdmg addition mo-
ments has not been p dp valuation of
the performance of lhc two'momcm PLF. Nota-
bly, the functions used for mixture fraction PDFs
normally do not have a strong effect upon predict-
icns of scalar properties in turbulent flames [28).

Correlations of mixture fraction fluctuations,
£, have been measured for turbulent jet-hke flows
for both noncombusting [31,32] and combusting
[30) <onditions., Some typical spatial correlations
arc illustrated in Fig. 3 for a carbon monoxide jet
diffusion flame burning in sull air. These results
involve two-pont spatial correlations of muxture
fracion fluctuations for honzontal radial paths
through the flame axis at posttions before, near,
and after the flame up (x/d =30, 40, and 50).
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Fig 2 Typical probability density luncllons of nuxture frac-
non for a turbulent carbon e diff flame
From Kovnalakss and Faeth [30)

The correlations are plotted as a function of Ar, T,
where Ar s the distance between the pomts and
I, 1s the spatial integral scale in the radial direc-
tion. The spatial correlations exhibit remarkably
httle vanation wath enther radial or axial posttion
when plotted in this manner. A simple exponential

~
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Fig 3 Spauat correlations of mixture fraction fluctuations for
a turbul carbon de/air Qffy flame From

Kounalakss and Faeth [30}

fit of the spatal correlation:

FOrG+on A7 an)
= exp(=Ar/T,) (1)

1s also shown in the figure. The exponential func-
tion 15 seen to provide a reasonably good fit of the
measurements, as illustrated n Fig. 3. This 1s
partly due to experimental ltmitations, since the
spatial resolution was not sufficient to resolve the
smallest scales of the flow which are expected to
modify the correlation near Ar = 0 [30). Neverthe-
less, the exponential expression provides a good
representaticn of the larger scales that contain
most of the signal energy and are expected to have
the greatest influence on turbulence-radiation in-
teractions, It should be noted, however, that these
results differ from earlier findings in nearly con-
stant density jets where radial correlations of mix-
ture fraction fluctuations had the shape of a
Frenkiel (unction [31,32) — these differences be-
tween ¢ ing and noncc ing conditions
must still be resolved.

Temporal correlaions of muxture fraction
fluctuations have been measured for the turbulent
carbon monoxide jet diffusion flames as well [30]
These results were also relatively independent of
position and could be correlated by an exponen-
tial function analogous to eq. (1) with time dif-
ferences, At, normalized by the integral time scale,
7; (subject to the same limitations as eq. (1) near
At=0) The exponential form of the low-resolu-
tion temporal correlation measurements agrees
with carlier findings for noncombusting flows {32}

With exponential functions estabhished as rea-
sonable approximations of spatial and temporal
correlations of mixture fraction fluctuations, the
next problem 1s specification of integral scales
Measurements of these scales for turbulent carbon
monoxide jet diffusion flames are illustrated n
Fig 4. The scales are normalized as I,/x and as
Tyl /(X = Xg), where u,, 1s the average velocity at
the burner exit and x, 15 a virtual ongm at x,/d
=13 When correlated in thus manner, the mea-
surements tend to collapse to single curves for a
range of flame positions The spatial integral scales
are relatively idependent of radial position and
can be correlated as I,/x=0017. In contrast, 7,
1s smallest at the axis. This behavior can be ex-
plained through Taylor’s hypothesis, e.g, =3~
I/@, where @ 1s the local ime-averaged stream-
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Fig. 4. Temporal and spatial integral scales in a turbulent
carbon monowude,air diffusion flame, From Kounslakis and
Facth (30}
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wise velocity, while I, 1s nearly mdependent of
radial position and # ts a maximum at the axs,

Resuits concerning mixture fraction statistics
Figs. 2«4 were generally preserved as the Rey-
nolds number of the carbon monoxide flames was
mcreased [30]. Nevertheless, this only represents
fragmentary findings for a single reactant combi-
nation, and generalization 1s needed to treat other
flame systems. One proposal has been to assume
that the radial spatial mntegral scale 1s proportional
to the local dissipation length scale [12,13), as
follows:

L= GG/ /e @)

where C, 1s an empincal constant having a value
in the range 5-7. C, is a turbulence modehing
constant having a value 7 009, and & and ¢ are
mass-weighted (Favre) averaged turbulence kinetic
energy and dissipation found from structure pre-
dictions using a turbulence model The temporal
mtegral scale was then estimated using Taylor’s
hypothesis while assuming that streamwise and
radral scales were the same, as follows:

7 =I,/@ (3)

where @ 1s the mass-weighted (Favre) averaged
mean velocity in the streamwise direction Egs. (2)
and (3) are consistent with the results illustrated in
Fig. 4 but addittonal study of the approximations
1s certainly needed For lack of an alternative, egs
(2) and (3) will be used to find integral scales in
the following

STOCHASTIC SIMULATION
Formulation

‘The stochastic simulation provides realizations
of nuxture fraction distrib along radiation
paths through the flow. Given the mixture frac-
tions, the state relattonships prowvide all other
scalar propertics so that spectral radiation intensi-
uties can be calculated from a narrow-band radia-
tuon model for each distnbution, The resulting
cnsemble, or ume senes, of spectral radiauon -
tensities s then used to compute moments, PDFs,

correlations and power spectra of spectral radia-
tion mtensities in the usual manner. The formula-
tion of the simulation and the narrow-band radia-
tion model will be discussed 1n the following

It will be assumed that the statistical properties
of rxture fractions are known along the radiation
path. This includes P(f) (taken to be a clipped-
Gaussian function), spatial correlations, and tem-
poral correlations if temporal properties are
needed (both taken to be exponential functions)
Aside from 1solated cases where measurements are
available [30], these properties must be estimated
from a model of the turbulent combustion pro-
cess. For flows having relatively high Reynolds
numbers, this 1s generally done using a turbulence
model  Fortunately, for relatively sumple flame
geometries, like buoyant jet flames, turbulence
models provide reasonably good estimates of scalar
properties, including mean and fluctuating mx-
ture fracttons {§-13,24,25] The necessary statisti-
cal properties of mxture fractions are then found
as descnibed earlier.

Due to the exponential form of the muxture
fraction cotrelations, 1t 15 most convenient to carry
out the simulation as an autoregressive process
[15] This involves finding the muxture fraction
fluctuation at any pomnt as a weighted sum of
fluctuations at other ponts and a random shock
A procedure of this type encounters difficulties
with any fimte range PDF, since the fluctuation
algorithm can casily generate a value of the van-
able which is beyond the range of the PDF, This s
handled by transcorming the simulation from f,
which has a clipped-Gaussian PDF, to a corre-
sponding Gausstan random vanable z, with ap-
propriate moments to match P(f), so that

f=:205:251; [=0,2<0; f=1,:2>1
@

Snce the PDFs of f and z are not the same,
corrclations of f and z differ as well, Methods to
find the appropnate correlations for : will be
taken up later.

Values of z are simulated at a number of points
along the radiation path. Following Box and
Jenhans [15), the value of the fluctuation of z at
pomnt £, z,, 1s found as a weighted sum of fluctua-
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tions found earlier, z/, where j=1-1,..., p, and

s Zpe
a random shock, a,, as follows*
=1
= Yo,z +a; 1spsi-l &)
-

The index p 1s selected to ehmunate points having
small correlation coefficients with respect to point
1. The ¢,, are weighting factors so that the simula-
tion satisfies correlations between fluctuations at
various points appearing mn eq (5). The parameter
a, 1s an uncorrelated Gaussian random varnable
having a mean value of zero and a vanance selected
so that the simulation sausfies P(z,)

Box and Jenkins {15} denve expressions for the
¢,, and the vamance of a,, @, as follows’

-1

L= Yoz q k=p.oa-1 (6)
’=p
o,
R L P )
I=r

With the correlations between the various points
known, egs (6) provide i-p linear equations, called
the Yule-Walker equations, needed to find the
¢,, This system of equations has a symmetric
positive defimte matnx and can be solved readily
using Cholesky factonzation Guwven the ¢, a;
can be found since all quasntitics on the right-hand
side of eq (7) are known,

A time-independent simulation s intiated by
making a random selectior for point 1, noting that
2/ =a, from¢q. (5) and @2 = 5{? from cq. (7) The
regresston relationships are then successively ap-
plied to find the remaining 2, along the radiation
path Fnally, the /, are found from eq (4), noting
that z, =, + z,, followed by computation of spec-
tral radiation intensities for this realization, as
described earhier This process is repeated a suffi-
cient number of times to obtain statistcally sig-
nificant radiation properties.

The previously computed potats in the regres-
sion process of eq. (5) only enter the calculations
through their correlations, therefore, time-depen-
dent simulations are essentially the same as tume-
independent simulations after appropriately num-
bering points 1o keep track of them in space and
time. This involves realizations of f along the

radration path at times Az apart. The simulation 1s
mitrated by finding a realizatton using the time-m-
dependent solution. R ons are then found at
subsequent times constdenng correlations with all
previous sealizations, unul temporal correlations
are properly represented. Subsequently, the pomts
at the earliest ime are dropped when calculations
for the next time are begun, for computational
efficiency,

The mam new difficulty with the time-depen-
dent simulation is that two-pont—two-time corre-
fations are needed Information of this type 1s not
available; therefore, the following ad hoc ap-
proximation has been adopted for lack of an alter-
native [13)

(D2 -k A =R, (k A1)z 2 (8)

where R,(k At) s the temporal correlation coeffi-
cent of z, fluctuations at a time delay of k At
Naturally, 1t would be just as plausible to use
R;(k At)z/ z] on the nght-hand side of eq. (8) for
a stationary turbulent flow. The differences be-
tween these possibilities provides a measure of
potenttal errors resulting from the use of eq. (8).
Since I 1s nearly constant over a cross-section of
the flow, eq. (3) indicates that errors are greatest
i regions where # vanes rapidly. Fortunately,
spattal correlations become small for separation
distances of T, and # does not vary significantly
over such distarces, pt.viding some pustification
for the approximation,

When temporal correlations are exponential,
use of eq. (8) for two-point-two-time correlations
leads to substanttal sumphficatton of time-depen-
dent ssmulations. Carrying out a denvation sumlar
to that of Box and Tenkimns {15] for a pure time
series with stationary statistics and an exponential
temporal correlation yiclds sumular results for the
combrned spatial/ temporal simulation with tem-
poral correlattons varying according to 2q. (8),
namely the ¢;, = 0 for all ponts at times less than
t— At, Thus, only the realizaton at £~ A¢ must
be retained while developing the reahization at ¢,
vastly reducing the storage and computational re-
q of the lation

Another uscful simplification 1s that radmation
predictions are relatively msensitive to the func-
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tional form of the spatal correlation, since they
are found by mtegrating properties along a radia-
tion path [13,33) Thus, temporal simulations using
statistically independent points spaced a distance
T, apart along the radiation path yielded results
that were essentially the same as simulations that
satisfied twenty-point fits of spatial correlations
along the radiation paths [13]. This simplification
reduces the simulation to a first-order (Markov)
process in time at each pont, for an exponential
temporal correlation, yielding [15}:

()= R (A)z{ (1= A1) +a, ®
where
at=(1-R,(80))

~2
2;

(10)
Correlation corrections

Initral time-senies stmulations of muxture frac-
tion distbutions involved the approximation that
correlations of f and z were the same [12,13). This
was adequate 1n most regions of the flames but
discrepancies between actual and simulated corre-
lations of mixture fraction fluctuations were sige
ntficant i regions where erther air or fuel inter-
mittencies were hugh {13}, The cause of the difft
culty 1s the transformation from f to z, since z
has an nfinite range while 0 5 /5 1. This implies
that the correlations of the fluctuations of z must

where f(z,) and f(z,) are obtamned from eq. (4)
and P(z,.z,) is the probability density function
of z; gwven z,. Now, the correct correlation for the
2 variables can be found by considenng an auto-
regressive process between the two pomnts under
the present approxumations, as follows

—
z,’nz;(?ﬁ,’/:’ )+a, (12)
where a, has a Gaussian PDF with
—) e 2 ]
2 =z - (z,' z]') Vi (13)
Then, for any realization of 2/, P(z,:z) 1s a
Gaussian distribution having a mean value of Z +
z(':,':,’/z’z) and a vanance of E;z, while P(z,) 15 a
Gaussian distnbuuﬂlz having a mean value of 2
and a varrance of ¢* . Substituting these expres-
stons, along with f(z,) and f(z,) from eq_(4) mto
eq. (11) yields an expression relating f," £ and
z z]. This expression must be evaluated numen-
cally for a cipped-Gaussian . {’( /) The procedure
was 1o select values of Z, 2* * and 2 z/ and then
;T vyt
find the corresponding values of £, f* ", and £ £".
Present results were found by integrating over the
region within 5 standard deviations from the mean

of the PDFs.
Since the temporal correlations of f are ex-

be corrected 1n order to properly late the
correlations of the fluctuations of f.

A generahized correction of the 2 correlations
has been developed for any two points, 1>,
having 1dentical mean and fluctuating muxture
fractions, f=f =/ and :/—':==7'!=-/1 e., for

AT = s Le.
temporal correl at stat y condt The
sumulation 1s carned out with the z vanable where
Z=Z7= and ?=?=;’1 can be found from
the transformation of eq. (4). In order for_the
simulation to yicld the correct correlation, I
the value of 2/ z; must be corrected so that the
following equation is satisfied

AL
= 7 1602 [ 1RG0 d, d,
()

P 1, 1t was convenient to fit the correlations
of z i the same manner and to express the
corrections of the correlations as ratios between
the temporal integral scales of / and z, 7,/7,. This
ratto 15 plotted in Fig. 5 as a function of fH2
with f as a parameter. The results are symmetric
with respect to f=0.5. The plots of 7/7, at a
particular value of / are ternunated at the maxi-
mum possible value of (f* “)'/%, 1e, where P(f)
degenerates to Dirac delta functions at f= 0 and
1. The ratio of 7,/7, decreases from umty as
(f* )/? increases and f approaches either 0 or 1.
Thus, there 1s no correction when z remains in the
range 0-1 where z = f. Whenever <0 or 2> 1,
however, 22> f? and the correlation for f gener-
ally is less than the correlation for z so that 7/,
is less than unity.

Simulations using corrected correlations for z
were evaluated for ‘z//z"*> 0.1, Using 10* reali-

e e £X o ——— -
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probability density functions,

zations, values of f and 77 were satisfied within

1% while values of f'f’/f" were satisfied within
3% Analogous calculations to find the corre-
spond_m; corrections of the correlations when f
and f*~ are not the same at the two pornts are
straightforward on a case-by-case bass,

Narrow-band radiation model

Given the distnbution of scalar propertics along
a radiation path, through the stochastic simulation
of muxture fractions and the state relationships,
spectral radiation tensities are found by solving
the equation of radiative transfer along the path.
Present results mvolved using a narrow-band
model, 1gnonng scattenng, due to Ludwig et al.
[34]. The procedure uses the Goody staustical
narrow-band model, with the Curtiss-Godson ap-
proximation to account for absorption along inho-
mogencous gas paths. This model accounts for the
infrared gas bands of water vapor, carbon dioxide,
carbon monoxide, and methane, as well as con-
tnuum radiation from soot. Radiation contribu-
tions of other species 1n hydrogen, carbon mono-
xide, and hydrocarbon flames burning sn air are
generally negligible since these species have small

concentrations n regions where temperatures are
high

RESULTS AND DISCUSSION

Some comparisons between simulated and mea-
sured radiation properties will be considered
order to illustrate the nature and effectiveness of
the lations. The di ion will be ltmited to
results reported by Kounalakss et al. {12,13] for
vertical turbulent hydrogen and carbon monoxide
jet flames burning n still air. Spectral radiation
i ies, 1 were ed for honzontal radia-
tion paths th. sugh the axis of the flames Predict-
ions were based on the present formulation of the
stochastic simulation of mixture fraction distribu-
tions. As noted earher, twenty-point fits of spatial
correlations 1 the simulation yielded essentially
the same results as the simplified formulations of
€gs. (9) and (10); therefore, the followng results
are based on the simplified formulation. Mixture
fraction statistics were estimated based on struc-
ture predictions using a turbulence model Ths
mtroduces uncertainties although the turbulence
model yielded reasonably good predictions of
scalar structure for the same flames duning earher
studes [8,9).

Predicted and measured probability de sty
functions of ¢, are illustrated i Fig. 6 for posi
tions before, near, and after the tip of a hydrogen
Jet flame (x/d =50, 90, and 130). These results
are for a wavelength A = 2520 nm which 1s within
a prominent infrared gas radiation band for water
vapor. Near the burner, the PDFs are relatively
symmetric but they become increasingly skewed as
distance from the burner exit increases. This 15 an
cffect of air intermattency as mean radiation levels
become small, since the spectral intensity can never
be negative while the mean value 1s generated by
occasional peniod: of high radiation levels. The
stochastic predictions represent the measurements
reasonably well, particularly for the small path
diameter which more closely approximates the

gligible path di of the simulation

Predicted and measured temporal power spec-
tra of spectral radiation intensities, E,(n), are
lustrated in Fig, 7 for positions beforz, near, ard
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Fig 6 M d and predicted probability density
of spectral rad for a turbulent hyd air

diffusion flame From Kounalakis et al {i2)

after the up of a carbon monoxide jet flame
(x/d =35, 50, and 65). The power spectra are
plotted as a function of frequency, n, both nor-
mahized by the charactenstic frequency, #./x,
where 7, is the mean velocity at the flame axis.
The specira exhubit a break frequency with an
energy-contaimng region having a nearly constant
E\(n) at low frequencies, followed by decay of
£\(n) with increasing frequency beyond the break
frequency, Normahized break frequencies i

hat with i ing distance from the
burner. This follows since the high temperature
regron that contributes most to radiant emsston is

located off axis near the burner and moves toward
the axis with mcreasing distance above the burner.
Since temporal integral scales are smallest near the
axis (see Fig. 4), this implies a corresponding
increase in the break frequency when normahzed
by properties at the axis.

The predictions provide reasonable estimates of
break frequencies and signal properties m the
energy-containing region for the results illustrated
in Fig. 7. The main deficiency of the predictions is
that they underestimate the rate of decay of Ey(n)
at high frequencies. Two main reasons can be
advanced for this behavior. Farst of all, spectral
mtensities were measured for a fimte drameter
radiation path. This tends to average out high-
frequency effects over the cross-section of the
radratton path m comparison to predictions which
represent an mfimtely thin path. An indication of
this effect can be seen by comparing measure-
ments for 5- and 10-mm-diameter paths appearng
m Fig. 7, which show that the spectra decay more
rapidly for the larger-chameter path. Secondly, the
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exponenttal correlation function used in the sto-
chastic simulation does not properly truncate
high-frequency fluctuations as turbulent micro-
scales are approached, as noted earlier. This causes
the predictions to overestimate high frequency sig-
nal levels Resolving these problems would require
extension of the stochastic simulation, to allow
simulation of groups of parallel radiation paths so
that they can be summed over a finite-diameter
path and to accommodate hugh-frequency cut-offs
associated with turbulence microscales when
simulating correlations However, since spectral
intensity signal energies are relatively small when
the discrepancy becomes significant, such exten-
sions are not needed for most applications.

CONCLUSIONS

The use of statistical time-series techmques to
treat nonhnear teractions during turbulent com-
bustion processes was described. Turbulence-
radiation 1nteractions were used to Mlustrate the
method, however, other turbulence interaction
problems for combusting flows require a sinular
treatment of scalar properties, Existing evidence
suggests that scalar properties are strongly corre-
lated through state relattonships n turbulent dif-
fuston flames and can be simulated by only simu-
lating a conserved-scalar Ithe mixture fraction. The
statistics of muxture fractions wn turbulent diffu-
sion flames can be approximated by a chipped-
Gaussian PDF and exponential spatial and tem-
poral correlations, at least for the large-scale fea-
tures that dommate radiation properties. Stochas-
e lations using st al ti ries teche
niques must be modified to account for the finite-
range PDF of mmture fraction. This mvolved
transformation to a new vanable having a Gaus-
sian PDF and finding appropnate corrections for
the correlattons n terms of the new vanable. An
autoregressive process that reproduced the PDFs
and spatial and temporal correlations of mixture
fractions yielded an ecffective simulation to find
the statistical properties of spectral radiatton -
tensities from turbulent jet diffusion flames. Thus,
additional development and application of the
method appears to be warranted.
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Nonequilibrium chemistry and flamelet
modeling of nonpremixed turbulent
reacting flows

Mitchell D, Smooke
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Practical combustion systems often mvolve the
burning of nonpremixed fuel,air systems in a
turbulent flow environment. While the ultimate
modehng of such nonpremixed systems will inevi-
tably involve the direct solution of the three-di-
mensional ime-dependent conservation equations
of mass, momentum, species balance and energy,
such a task 15 computationally safzasible on even
the largest supercomputers at the current time.
The primary difficulty with such an approach 1s
that there are large vanations (orders of magm-
tude) in the length scales present in the reacting
flow. The ability to resolve the relevant solution
structure requires computational resources that
currently do not exist, As a result, the modeling of
nonpremixed turbulent reacting flows requires the
mtroduction of a number of simphfymng assump-
tions to make the problem more tractable. One of
these methods, the lamnar flamelet model, con-
siders a turbulent flame to be composed of an
ensemble of thin laminar diffusion flames. It can
be shown that these flamelets have a one-dimen-
sional structure normal to the surface of the
stoichiometric muxture [1). The model 1s applicable
1f the length scales of the turbulent eddies are
much larger than the reaction zone thichness of
the flamelets, The structure of these flames are
often described in terms of a conserved scalar Z
called the mixture fraction. The mixture fraction
can be considered to be the fuel clement mass
fraction in the system. Vanations of the lanmnar
flamelet approach center pnimanly in terms of the

01697439/91/50350  © 1991 = Elsevier Saence Publishers BV

chemical approximations used in describing the
flamelets. In some situatrons local thermodynamic
equilibnum chemustry 1s appropriate In other
cases finite rate chemistry 1s needed. In the discus-
sion that follows we consider the incorporation of
finite rate chemistry into flamelet models of non-
premxed turbulent combustion.

Duc to the spatial vanation in the stretching of
the turbulent flame, the flamelets are subjected
mstantaneously to a certain rate of stram, This
can be represented in terms of the scalar dissipa-
tion x,, at the pont of stoichiometry {2]

x,,=2a(P£r)“(%—’Z,-): )

where a 1s the stramn rate, C 1s the Chapman-
Rubesin parameter, Pr is the Prandt] number and
1 15 a density weighted coordinate The implica-
tions of this model are that at any point of space
the instantancous local composition of the turbu-
lent flame is that of the diffusion flamelet. Local
conditions may be viewed as corresponding to a
flamelet in a flamelet famuly that is parametenzed
by the degree of stretching x,,. The structure of
the flamelet provides a umique relationship be-
tween any scalar § and Z. We wnte this in the
form

S=5(2Z.x,) )

We treat Z and x,, as random vanables whose
Jownt probability density function (PDF) P(Z,x,,)
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must be determined. In practice the PDF 1s fac-
tored such that

P(Z,x,) = P(Z) P(xs) 3

Ordmarnily, B(Z) 15 taken to be the beta function
and B(yx,,) 1s taken to be the log normal distribu-
tron [3]. The mean and vanance of the log normai
distribution are computed from the first moment
of x, and the Favre averaged turbulent dissipa-
tion and turbulent kmetic energy, respectively.
With this formalism established, scalar properties
are determined by postulating a set of burned and
unburned states [2). In particular, we can write the
Favre averaged value of the burned contribution
to the scalar S as

§= '[Ox"'fols(z,x“)ﬁ(z)ﬁ(x“) dzdx, @

where x,, represents the maximum value of the
scalar dissipation at which a flame exists A simi-
lar mtegral can be written for the unburnt states
The jont dependence of S on Z and x,, 1s para-
metnc m x,, and 1s characterized by a htrmted
number of data files that constitute a flame hibrary
{4] Evaluation of the properties in (4) are carried
out by replacing the integrals by numencal
quadratures. The Favre averaged properties are
then utlized in a boundary layer k-¢ turbulent
flow model,

The indwvidual laminar diffusion flamelets m
the flamelet hbrary are modeled by considering
counterflowing streams of fuel and oxidizer n

either a Tsup or a Seshadni-type burner [5,6). A
similarity solution is sought for the two-dimen-
sional governing conservation equations The
flamelet problem is then reduced to solving a
nonkinear two-point boundary value problem along
the stagnation pomnt streamhne. Individual
flamelet calculations can be made for a given
chemical mechanism, transport approximation and
Jet veleaties. Once the computation 1s completed,
the solution can be stored as a function of the
mixture fraction with each flamelet charactenized
by the scalar dissipation at the point of stoichio-
metric mixture.
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Abstract

Randic, M, 1991 Novel graph theoretical approach (o heteroatoms in quantitative structure-activity ielationstups Chemometrics und
Intelligent Laboratory Systems, 10 213-227,

A novel approach to charactenzation of hetervatoms in graph theoreticul approaches to uantatative structure-activity relations
ships (QSAR) 15 outhined, The basis of the approach is the use of diagonal entries of the adpacency matnix as vanable parameter, in
full analogy to the well hnown generalization of the Huckel Mulecular Qibitals (HMO) method when exiended 10 hetsrocongugated
systems The approach is illustrated on «lomdine-like ¢ ds where carbon and chlonne atoms « ¢ dissnminated by using
A= - 020 as the dragonal entry for chionine atoms. Denved weighted path numbers are used as desctiptors and 4 multipie regression
based on three descriptors resulted an the correlation cocfficient R = 0977 and the standard error § = 0233 Thuy represents a
substantial improvement vver the best tiaditional QSAR analysts which involves five descniptors un 4 nonhineat cotrelation equation

of graph th ptors are

INTRODUCTION

In contrasting graph theoretical schemes [1] to
traditional quantitative structure—activity relation-
ship (QSAR) methods 2] one cannot fail to ob-
serve the complementanty of the two approaches.
Traditional QSAR is mostly based on a large
number of empirical parameters. The graph theo-
retical approaches use a rather small set of struct-
ural invariants, graph invanants in particular. In
traditional QSAR one uses statistical methods in
order to sclect critical descriptors and derive a
structure—activity correlation. In graph theory one

* Thus paper 15 dedicated to Professor Dusan Hadh from Bons
Kidag Institute 1a Lyubljana, Slovenua, Yugosiavia
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with R=0964 and §=0301) A detailed companson is made with available QSAR results, and the advantages (as well as

manipulates structures algebrascally, using partal
order and ranking based on selected standards. Of
course, graph theoretical descniptors also lead to
structure-property and structure-activity correla-
tions based on statistical analysis [3-6}. The apph-
cattons of graph theory {7] to QSAR cover a
vanety of topics, from the study of various physi-
cochemical data to biologreal activities and toxici-
ties (refs, 1, 2 and 5-7, and references cited therein,
and refs, 8-24), including even the use of graph
theoretical descriptors in pattern recogmtion [25].
But the pnme distinction between graph theoret:-
cal schemes and traduitonal QSAR 1s that the
former 1s ‘structurc-expliei” while the latter is
*structure-cryptic’ {1). The former uses well de-
fined mathematical invanants which have o direct
structural interpretation, while the latter are mostly
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expressed as physicochemical properties that re-
main to be interpreted structurally. For cxample,
the molar refraction (MR) has frequently been
used as a descriptor in tradiional QSAR, but how
MR depends on molecular structure, so that it can
be predicted once the chemcal structure 1s known,
still remans to be understood. The distinction can
be illustrated by reference to a particular study of
selected physicochemucal properties of over a
hundred compounds by Cramer (26}, Using prin-
cipal component analysis Cramer has shown that
aqueous solvation or the actwvity coefficient in
water, partition cozfficient (octanol/ water), boil-
g pomts, molar refraction, liquid statc molar
volumes and heats of vaporizauon, which mutu-
ally show varable pairwise correlations, from non-
existent to very high correlations, can all be well
explamed (at 95% vanance) by two vanables This
illustrates well the presence of structural factor, as
yet to be identified, on which all the studied
properties critically depend. According to Cramer
[22] *. 1t seems possible that n wiecular connec-
uvity indices inay represent alternative anes for
compound subscts within ‘BC(DEF) space’.” Un-
certainty here reflects upon the intrinsic difficulty
associated with attempts to express mathematical
properties (graph invariants) as a combination of
physicochemical variables, instead of the other
way round. If Cramer s correct in identifying the
connectivity indices as alternative axes of physi-
cochemical space, the two major vanables being
dentified as ‘bulkiness’ and cohesiveness', that
would only idicate that ‘bulkiness” and ‘cohesive-
ness’ as molecular properties, will corelate with
the connectivity indices.

LIMITATIONS OF GRAPH
PROACHES

THEORETICAL  AP-

Graphs depici molecular connectivity and as
such are devoid of information on heteroatoms
and the spatial arrangements of atoms. It is not
then surprising that to uninitiated people graph
theoretical schemes appear at best unpromusing, if
not doomed to failure. Equally, graph theory does
not produce numerical data, analogous, say, to

hanical cc ions. It can never-

theless lead to quantitative results when informa-
tion on selected standards 1s available. As long as
the molecules considered are structurally closely
related (e.g. they have the same heteroatoms i
similar Jocations and have the same stereochem-
1stry) graphs can be employed and useful correfa-
tions denived [28-36}. A neglect of heteroatoms
and spatial molecular architecture may appear to
be severe mitations of graph theoretical models.
However, for QSAR studies concerned with a
search for optimal compounds, once lead com-
pounds are known, graph theoretical schemes were
found to be quite successful, not only in suggest-
ing a more potent compound, but in providing
assurance that the compound thus found s the
best possible one within the given family {37},

An extension of molecular graphs to melecular
structures by embedding graphs on a regular
three-dimensional grid has only recently been con-
sidered {38-40] By using topographic (geometr-
cal) matnices, rather than topologal (graph theo-
retrcal) adjacency matnces, one can differentiate
between different conformers, such as as and
trans, boat and chair, between individual rota-
tional 1somers, etc. Importantly, the denved
molecular descriptors are quite analogous to
molecular connectivity indices, waighted path
numbers and other graph-related nvanants, ex-
cept that now they are sensitive to precise molecu-
lar geometry. Moreover, the indicated generahiza-
tion from adpacency (connectivity) to topography
(geometry) suggests further generalizations of
graphs i which structural invarants are derived
from other matrnices associated with molecules,
such as the bond order matrix, the bond polanza-
bility matrix and even the Hamiltonian matnx
[41). It appears that we arc only at the beginning
of new directions in our scarch for uscful molecu-
lar descriptors. However, here we will restrict our
attentron to another gencralization of graphs: to
the problem of treating heteroatoms.

Applications of graph theoretical methods in
QSAR to molecules with heteroatoms in more
general positions lead to a number of generaliza-
tion of simple graphs. Kier and Hall {3} intro-
duced the concept of valence connectivitics in
which they associated different ‘correction’ factors
with different heteroatoms, Kupchik [42] consid-
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ered the use of Van der Waals radii of hetero-
atoms as a source of their discrimination by suita-
bly modifying the connectivity indices. Hansen
{43] similarly considered purely empirical correc-
tion factors for heteroatoms. In this paper we will
outline yet another alternative approach to hetero-
atom which has some analogy with generalizations
of Hitckel Molecular Orbital (HMO) methods from
hydrocarbons to heteroconjugated compounds [44]
and represents an extension of an earlier work on
sensitivity of path numbers to variation in bonds
mvolving oxygen and nitrogen {45].

CLONIDINE-LIKE IMIDAZOLIDINES -~ AN ILLUS-
TRATION OF A GRAPH THEORETICAL APPROACH TO
HETEROATOMS

We have selected clonidine and clonidine-like
mudazolidines — compounds having a hypoten-
sive action =~ because in these molecules chlonine
(as heteroatom) appears in different locations and
therefore the compounds offer a suitable test 1f the
suggested novel descriptor for a heteroatom is
adequate. The clonidine-ihe compounds ex-
ammed here have been extensively studies in the
past [46-48), including a particularly detailed
study by Timmermans and Van Zwieten [49] based
on the traditional QSAR. Thus it will be possible
to make a detailed comparison between the corre-
lations based on molecular properties as descnp-
tors and our results derived from the usc of graph
theoretical indices as descriptors, Moreover, the
data set used includes two extreme potency values
which would be expected to give trouble 1n curve
fittings and cross-validation, and hence the data
enables a critical test of a medelling of biological
activity to be made.

A need for a novel appraoch to heteroatoms in
graph theoretical approaches becomes apparent
from x compatison of the biological activity of the
following:

Compound Actiuy
2,4-Dimethyl 810
2-Mcthyl4-chloro 275
2,4-Dichloro 61

2-Chloro, 4-methyl 53
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Fig. 1 Numbenng of the pounds and di of the
vanable fragr of 2-aryl dazohd. dered

Chlonne atoms are indicated as small circles

The four compounds selected iflustrate a lack of a
bond additvity for the brological activity (experts
mental EDg, values in pg/kg obtained from
dose-response curves following ntravenous ad-
ministrattion to anesthetized, normotensive rats,
i.e., m-vivo effective dose which produces 1n 50%
of population ancsthesia). Any bond additive
scheme should interpolate data on derivatives with
a sigle methyl and single chlonne between the
dimethyl and the dichloro denvauve, but this ap-
parently is not possible here.

TRADITIONAL QSAR CORRELATIONS BETWELEN
PROPLRTIES AND ACTIVITY

In Fig. 1 we depicted molecular skel of the
18 imidazolidines from a collection of 27 reported
in the study of Timmermans and Van Zwieten
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[49]. We have restricted our attentton only to

clonidine denvatives with chlonne as heteroatom

The nine compounds not considered here involve

bromune, fluorine, nitrogen and oxygen and offer

too small a sample to allow one to determine
empinically the graph theoretical parameters that
discnmmate  between these heteroatoms. The

QSAR parameters considered by Timmermans and

Van Zwieten include:

(a) d pK,, which refers the substituent effect on
the dissoctation of the imdazohdines i water
expected to prevail under psychological condi-
tons;

(b) m-clectron charge densities, from quantum

chemrcal calculations denved for free bases

and protonated species;

the energes of the highest occupied molecu-

lar orbital (HOMO) and lowest empty (un-

occupted) molecular orbitals (LEMO or

LUMO), in particular those of protonated

species were considered as molecular descrip-

tors;

the lowest electronic excitation energies of the

molecules (given by the difference of HOMO

and LUMO energies);

fog P’ (apparent partition coefficient) from

the octanol-0.1 M phosphate buffer, pH 7.4,

system;

() the hydrophobic constant # (in fact the sum-

mation over the substitutent # values) adopted

as a measure of hydrophobic interactions,
parachor, defined by Sudgen [50] as the prod-
uct of the molecular volume and the fourth
root of the surface tension, a measurc of
molecular stze (along the scries where surface
tension 1s constant) perhaps related (via
surface tension) to an overall lipophilic behav-
ior of the molecules;

(h) Taft’s stenic constant {51}, as expanded by
Hansch {52}, to account for the steric proper-
ties;

(1) the molar refractions at the wavelength of the
sodium D doublet Iine, MR as a representa-
tion of the molecular volume.

Obscrve the rather lengthy hist of molecular
properties, experimental or computed, used 1n the
search for the structure-activity correlattons, This
kind of QSAR should be termed property-activ-

{c

~

«

~

(e

~

=
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ity, because the analysis 15 confined mostly to
property-activity relationships, Let us pomnt out
the difficultzes in counting the parameters used 1n
such analyses. A lack of information on the de-
grees of freedom (r.e the number of mdependent
parameters) involved leads to ambiguities about
the reported statistics. Part of the problem
oniginates with difficulties m tracing underlying

ptions and the ber of parameters used
there, For nstance, what varniant of M9 calcula-
tions ts used, and what assumptions and ap-
proximations are involved there? How does one
estimate molecular volume? What 1s involved in
determming the numenical magmtude of the
volume? How does one scale various contribu-
tions? To what extent are selected QSAR parame-
ters internally consistent and to what extent are
ndividual parameters independent? How does a
change in a choice of one descriptor nfluence
changes of other parameters in order to preserve
internal consistency of the model? It may be dif-
ficult to answer these questions. It 1s this accumu-
lation of many small steps, each perhaps well
defined, which eventually makes it difficult to
1dentify the degrees of freedom used 1n subsequent
correlations. The situation may be contrasted to
the use of graph theoretical descnptors, the num-
ber of which 1s always known and which are
defined a pnori.

The corrclations reported by Timmermans and
Van Zwicten [49] are summanzed in Table 1. We
give the statistics and the correlation equation
corresponing to a set of 18 methy! and chloro
denvatives which we selected from the mminal set

TABLE 1
S y of the correl based on cghteen 2.
{aryl dazohid pounds having only chlonne as
heteroatoms
Regression R s
05461og P =0222(log P)? 0.786 0629
=0004 (Par)* +0 119 Par=0 534 pX'

+2,707 HOMO +4.983 £k ~15.583 0964 0301
=0717pK ~0057 0675 0726
0.111 (Par)? ~ 00003 Par—§ 842 0731 0691

— 0885 pA +6687 HOMO+7.238 EE+22 651 0.789 0646
~00003 (Par)? +0096 Par -0 572 pK =7849 0902 0458

e e
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of 27 compounds. The revised correlations gave
slightly better staustics, as expected, i view of the
fact that now the sample of compounds studied 1s
more homogeneous.

We may briefly summanze the main results of
Timmermans and Van Zwieten as follows:

(a) correlation coeffictent R of over 0.950 (and
accompanying standard deviation, S, of fess
than 0.350) require five molecular descriptors;

(b) single descriptor, log P (as an indicator of
drug transport processes), gives the correlation
with R =0.529 (S = 0 864);

(c) the major single vanable of the best correla-
tion1s d pK, with R=0.482 and § = 0.892;

(d) the best two-parameter correlation mvolves
parachor (Inear and quadratic terms) and -
creases the correlation coefficient to R = 0,656
(S 0784);

(¢) the best three-term expression (based on
parachors and d pK,) achieves the somewhat
respectively correlation coefficient of R=
0853 (S =0.544).

Timmermans and Van Zwieten [49] concluded
their study by examuning the role of the hydro-
phobic constant = and the role of the steric sub-
stituent parameter. Each case, i a companson
with the best five-parameter correlation, shows a
shghtly reduced correlation coefficient (R = 0.912
and R=0.943, respectively) and an mcreased
standard deviation (S = 0.455 and S =0.369, re-
spectively). The tradwional QSAR study of
Timmermans and Van Zwieten well illustrates the
vanous choices in multiple regression analyss,
resulting an a correlation equations using five de-
scriptors with a hagh coefficient of multiple regres-
10D,

How would graph theoretical schemes fare in
comparison?

THE CONNECTIVITY INDEX FOR HETEROATOMS

In order to consider the above question we
have first to consider an adequate graph theoreti-
cal approach to heteroatoms. The index, miually
called the branching mdex (53} and subsequently,

quite appropriately, renamed by Kier et al. [54] as
the connectivity index, was designed fron an anal-
ysis of selected physicochemical properties of al-
kanes, Firstly one orders isomers with respect to a
property of interest. Thus, for example, in the case
of hexanes and their boiling points we obtan the
following sequence.

2,2-dimethylbutane < 2,3-dimethylbutane

< 2-methylpentane < 3-methylpentane

< n-hexane
By differentiating bond types involved the above
ordering leads to inequalities, shown below, where

(1, n) represents CC bond type with m and n
being neighboring carbon ators:

[(1,2) +3(1, 4) + (2, 9)) < [4(1. 3) +(3.3))
<{(L2)+2(1.3) + (2.2) + (2.3)]
<f2(1.2) + (1, 3) + 22, 3))
<[2(1.2) +3(2,2))

Similar inequalities follow from ordering of other
alkanes. The bond type contributions

(1.2, (1,3), (1,4),(2,2), (2. 3). (2.4, 3, 3),
(3.4) and (4, 4)

are viewed as unknown vanables, which will need
to be determined. instead of searching for individ-
ual (m, n) values one finds that a simple al-
gonthm: 1/y(m, n) generates an acceptable
solution. Hence, this single assumption defines
bond contributions to the connectivity index [53).

It may appear amazing that a simple ad hoc
mathematical construction, the connectivity index,
performs so well. But there ought to be no surprise,
because the index was constructed to be a solution
to an ordering of structures, an ordering which
parallels the relative magmitudes for selected prop-
erties. The success of the connectivity index 1s in
its design. One can interpret the vanable bond
weights as relative ontributions of bonds m a
typicat molecular addutivity, when bonds are dif-
ferentiated according to the number of the nearest
neighbors. The bond types (1, 2), (1, 3) and (1, 4),
for example, correspond to bonds between primary
and secondary, prnimary and tertiary, and primary
and quaternary carbon atoms, respectively. The
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connectivity 1ndex attnbutes different ‘ volumes’
and ‘surface’ contributions to these different bond
types, simulating the relative volume and surface
fragment contributions.

WEIGHTED PATH NUMBERS AS MOLECULAR DE-
SCRIPTORS

A single molecular descriptor will not suffice in
many apphcattons, When extending the basis of
descriptors one can (1) either consider a collection
of additional, structurally unrelated descriptors or
(1) design a number of different but structurally
related descriptors. The higher connectivity in-
dices {55) represent an illustration of the latter.
They were defined by extending the bond as a
fragment to patrs of bonds and several consecutive
bonds as larger molecular fragments. In this way
not only one increases the number of descriptors
available for regression, but also facthtates the use
of seq as math | objects to represent
structures. Other choices of structurally related
descniptors include extended connectivities {56],
path bers [57], weighted path bers [58)
and distance sums [59]. We will use here weighted
path numbers (to be subsequently briefly outhned).

In Table 2 we illustrate weighted path numbers on
a ten-atom common fragment for compounds of
Fig. 1:

which represents a variable fragment of the graph
of clomdine-lihe molecules The weighting factors
for the mdividual bond types are the same ones
introduced in the defintion of the connectivity
index.

Let us emphasize the wealth of data in Table 2.
Furstly, for each atom separately we obtamn path
sequences. these are the numbers listed 1n separate
rows. As a sum of atomic path scquences we show
in the last row the corresponding sequence for the
molecule. The first number gives the number of
atoms, but alternatively this can be replaced by
the “molecular’ zero-order connectivity index of
Kier and Hall [3]. The second number in the
molecular sequence 1s the connectivity index,
which can be viewed as the molecular path num-
ber associated with paths of length one, 1.¢. bonds
The successive path counts correspond to higher
connectivity indices, although they differ some-

TABLE 2
Wesghted path bers for a ten-atom frags of the 2.6-dimethyl denvatve of clomdine
Rows give wesghted paths for individual atoms, the Last row (obtatned by 5 dtomie ¢ b ) 1tp 4 thatadtenza

uon of the molecule (molecular fragment) as a whole,

Atom P P P P Ps 13 P Atomie 1D

1 0817 0272 018} 0179 0037 0019 0008 2516

2 1150 0222 0219 0038 0023 0001 0001 2614

3 1 0929 0.136 0068 0028 0016 3177

48 1319 0426 0.302 0064 0049 0001 3170

5.7 0908 0622 0.193 07 0032 0016 2945

6 1 0408 0372 0031 0082 2953

9,10 osm 0428 0246 0.75 0037 0029 2497

Molecule Molecular ID
4,788 2.392 1195 0605 0203 0071 0613 19271




®  Ongjnal Research Paper

219

what m the defimtion in that here the weight
factors of the "connecung’ atoms are used twice.
But that 1s a mmor difference that changes the
results g wely, not quahtatively, and we
may continue to refer to these as ‘higher’ connec-
tivity indices. In addition to the quantities already
mentioned we may also consider adding atomic
contnibutions, not along columns as was the case
with denving the molecular path numbers, but
along the rows. We then obtain a charactenstic
number for each atom, the so-called atomrc 1denti-
fication (ID) number. As one can see these atomic
1D numbers are sensitive to the atormic environ-
ment and tend to be different for atoms sven 1n
fughly stmlar atomic environments However, sig-
nificantly, smaller changes 1n the environrient are
accomp d by ler vaniations in atormc ID
numbers. By adding all atomic ID numbers (or
alternatively by adding the molecular path num-
bers, proper account of the role of the zero-con-
nectivity 1ndex), one obtams the molecular 1D
number {60] These molecular ID numbers, which
m a way encode the molecular volume, have al-
ready been used tn some structure-activity cluster-
tngs and correlations [58,61]. One ought to view
Table 2 as a pool of varous molecuiar descriptors.
Is 1t possible to incorporate heteroatoms n
some analogous way mn the path count schemes?
The quantities 1n Table 2 were calculated (by a
program ALL PATH {62,63] from the graph ad-
jacency matnx, which have zero everywhere (in-

TABLE 3

Weighted path bers for the ten-atom fi
2.5-dichloro denvatve of cloudine

cluding diagonal entries) except on places corre-
sponding to any pair of connected atoms when the
entry 15 1. Heteroatom X can be discimunated by
settting the corresponding dragonal elements or a
matnx to be different from zero. This 1s fully
analogous to the treatment of heteroatoms n
HMO theory. Spialter [64,65], attempted m this
way to record heterosystems in chemucal docu-
mentation, and even earlier Balandin [66] used the
same techmque to identfy heteroatoms Dugundji
and Ugi [67), in a similar manner, recorded the
number of valence electrons of non-carbon atoms
in their BE (bond-electron) matrices used to fol-
low chemical reactions. Thus 1t appears natural to
use variable diagonal entry to discriminate among
heteroatoms, a practice which apparently 1s not
novel.

In Table 3 we list a weighted path numbers for
the same ten-atom fragment of clomidine, but now
the atoms 9 and 10, corresponding to chlornes in
compound /, have been assigned a non-zero diag-
onal entry in the adjacency matnx The ALL-
PATH program recognizes the non-zero diagonal
entries and modifies the weighted path count
accordingly Hence, if we compare Table 2 and
Table 3 we can observe the differences induced by
the two chlonine atoms. Thus, Table 2 represents
the 2,6-dimethyl denvative, compound 6, while
Table 3 corresponds to the 2,6-dicholoro dertva-
tive, compound . In the next section we will
constder correlations between the eighteen 1m-

with chlonine atoms as heteroatom substituents (labels 9, 10), woriesponding to the

Observe a similanty between the corresponding path numbers of Tables 2 and 3

Atom 14 Py P P4 Ps Ps Pr Atomue ID

1 0816 om 0181 019 0037 0019 0008 252%

2 115 0222 0234 0045 0023 0009 0006 2690

3 1 0975 0136 0068 0028 0018 3228

4.8 1387 0426 0310 0064 0052 0005 0004 3248

57 0908 0650 0193 0,185 0032 oor? 2984

6 1 0408 0400 0091 008s 2984

9,10 0646 0479 0275 01200 0042 0034 0003 2680

Molecule Molecular ID
4924 2493 1254 0647 0212 0078 0014 19625
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1dazoldines of Fig. 1 using the graph theoretical
descrptors from Table 2 and Table 3, and similar
data for other compounds of interest.

GRAPH THEORETICAL CORRELATION OF THE AC-
TIVITIES OF IMIDAZOLIDINES

The emphass in this article is on advantages of
graph theoretical descriptors m comparison with
the traditional QSAR descriptors. Table 3 il-
lustrates how a graph theoretical scheme naturally
incorporates heteroatoms, but the task of finding
optimal ‘diagonal’ contributions for varous het-
eroatoms or even the same heteroatom n dufferent
environments remains to be studied in greater
detail. The prelmary exa unation reveals that
positive diagonal clements decrease the path
counts while negative elements ncrease the mag-
mtude of the weighted path counts This suffices
for our purpose of generating prelininary connec-
uwvity ndices that discrimmnate positional 1somers
with vanable heteroatom location. In Table 4 we
listed the leading connectivity indices for the cigh-
teen compuunds of interest as derived by the
ALLPATH program with assumed X = —0.20 en-
try for cach chlorine present. In addition there 15
also an option to change C-Cl bond weights but
at this stage we decided to keep the number of

Ch and Intell Lab y Systems W
TABLE 4
Leading y ndices for the eigh compounds con-
sidered
No Compound 1-X 2-X 3-X
1 2,6-Cl, 4278 2015 0978
2 2.4,6-Cly 4418 2120 0969
3 2,3.Cly 4278 2015 0963
4 2,6-Cly-4-Me 4384 2092 0957
5 2-Cl-6-Me 4244 1989 0964
6 2,6-Me, 4210 1964 0949
7 24-Cl, 4262 2036 0982
8 2-Cl-4-Me 4228 2008 0970
9 24 Cly6-Me 4384 2098 0955
10 24-Mey6-C1 4350 2067 0944
1 2.5Cl, 4262 2036 0982
12 2Q 4 1939 0982
13 26-Mep-4-Cl 4350 2069 0942
14 2-Me-4-C1 4228 20n 0968
15 24,6-Me, 4316 2042 0931
16 24-Mey 4194 1983 0956
17 2-Me 4088 1914 0966
1B Unsubstituted 3.966 1869 0979

variables to a munimum. In order to emphasize the
role of substitution pattern, because we are dealing
with compounds of different number of atoms, we
focused attention on the cight-atom skeleton

tog 1/EOy,
ik
[
400 410
=it
-2l o

Fig. 2, Plot of the connectivity index against kg 1, ED Open wircles indicate compounds without chivnine substituents, singly crossed
ardles indte compounds with single substituted chlonne, doubly crossed wrtles indicate compounds with two chivnnes, and inply
crossed arcle indicates the compound with three chlonne heteroatoms
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shown below, which s common to all the struc-
tures and is sensive to substitutions

O

The reported connectivity indices i Table 4 there-
fore represent fragment connectivities, 1e  they
mclude only contributions from the above com-
mon eight atoms. The computed path numbers,
however, mvolve from eight to eleven atoms, de-
pending on the substitution pattern. In this way
we have separated the combined influences of the
two structural features — the size and the shape
— which will enable us to focus attention on the
‘shape’, 1.e. the substitution pattern, and its role
on the relative broactivities of the compounds

With a smgle graph theoretical descnptor, the
connectivity index 1 — X of Table 4, we obtain the
correlation shown in Fig. 2. The correlation coeffi-
cent s R = 0.690 and the standard error estimate
1s $=0.712 This 1s visibly better than the best
single property-based QSAR correlation, the
log P’, with R=10.529 and § =0.846 The corre-
lation equation

log(1/ED) = 5 181X = 24.1643

explains almost 50% of the vanance in hypoten-
swve activity and equally shows that bond additiv-
ity amphed 1n the connectivity index) is not the
only aspect of this particular structure-activity
relationship. The above may be contrasted with
the log P’ correlation, which account for only 30%
of the vanance 1n hypotensive activity and shows
that hipophilic behaviour 1s not the dominant con-
tnbutor to the biologieal activity of lomdine-like
imudazolidines.

What is the next best descnptor that will 1m-
prove the correlation? A way to proceed is to
cxamine the correlation predictions more cosely
and sce of a well charactenzed subset of the com-
pounds show greatr departure from the corrcla-
tion, By nspection of Fig. 2, which gives a plot of
log(l, ED) aganst the connectivty index, we ob-
serve the average values of log(l, ED) signifi-
cantly increase with the number of chlonne atoms
as substitutents. Hence we may expect that inclu-

sion of the molecular weight, which increases with
the number of substituted chlorines, will improve
the correlation. Alternatively, we may consider the
count of chlormes (which parallels molecular
weight as a descriptor) to improve the correlation)
This observation leads to the following two-de-
scriptor correlation equation:

log(1/ED) = 3.508X + 0.440N — 15.0101

with R=0.764 and S = 0656, where N 15 0, 1 or
2. The tmprovement 1s not dramatic, but the corre-
lation 1s sigmficantly better than the quadratic
correlation based on log P’ (with R = 0.647 and
§=0.793) or the quadrauc correlation based on
parachor (with R =0.656 and S =0784), which
simlarly volve three terms in the correlation
equations, Hence, again, we se¢ that simple graph
theoretical considerations produce visibly better
results,

Another Jook at the compounds which show a
greater departure from the correlation line in Fig
2 suggests that bond dipoles may play some role.
Among the isomers having a same number of
C-Cl bonds those with bonds in the ortho posi-
tion have greater activity than those with C-Cl
bonds 1n meta or para postions Consequently,
one can visuahise the resultant dipole vectors as
pomtiug to the direction of the ‘shuft’ of the pomts
in the correlation By using the magmitudes D of
the dipoles (which are sensitive to the subsutution
mode) as a parameter we also expect to 1mprove
the structure-activity correlation Implemeniation
of thts observation leads to the expression.

log(1/ED) = 5.854X + 0 679D — 24.508

with R=0.79% and §=0611 This particular
two-descniptor correlation compares well with the
two-descrptor correlation of Twnmermans and
Zwieten,

The graph theoretical approaches not only have
their quantitative value, they also provide novel
qualitative structaral msights. In the above case
we identificd molecular weight and boad dipoles
as potentially useful descriptors. Nevertheless, we
should add “hat the guantitative results, 1mpres-
sive as they are, are not necessarily the best which
the particular graph theoretical approach may
yield. We have not attempted to optimize our
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heteroatom parameter (the diagonal entry in the
associated adjacency matrix) That there is a room
for improvement can be secen by considering
another choice for diagonal entry parameter of
chiorine. The value of x= ~040 gives a better
(single descriptor) correlation: log(1/ED) =
4.860.X = 20.531 with R = 0.750 and $ = 0,651, as
compared to the correlation denved with x =
~020 (R=0690 and S$=0.712). This result,
which 1s also not optimal, shows that a single
graph theoretical descriptor can capture dominant
structural features well. If a single graph theoreti-
cal descriptor can produce correlations which are
better than alternatives using two and more tradi-
tional descriptors, 1t seems worthwhile to explore
further the possibihities based on graph theoretical
descriptors. Recently an approach to the construc-
tion of better single descriptors has been consid-
ered (68] It appears that further improvements
structure-property and structure-activaty studies
are possible by following sinular promsing durec-
tions 1 modifying the functional dependence of
the topological indices used Traditional QSAR
approaches lack this flexibility by wirtue of being
limited to molecular properties as a source of
structural charactenzations

MULTIPLE REGRLSSION USING HIGHER CONNEC-
TIVITIES

A smgle best descnitor allows one to model a
structure - actvity study by considering the role of
vartous ‘correction’ factors, as outhned above. An
alternative approach s to use ‘higher-order” de-
scriptors, such as higher-order connectivitics, paths
of longer length, extended connectivities, ete. If,
for a collection of compounds constdered, such
descnptors are not strongly intercorrelated they
may span the structure space adequately, and
hence produce impressive correlations. We want
to end this exposition by showing correlations of
antthypertensive activities of clomdine-like 1m-
1dazolines ustng longer (weighted) paths involving
the particular encoding of chlonne heteroatoms.
In Table 5 we collected the information on the
correlations using paths of length one (the connec-
tivity index 1 — X)), paths of length two (denoted

TABLE 5

Predicted antihypertensive activities based on the connectivaty
1ndices 1— X, 2— X and 3- X denved from multiple regres-
s10n and cross-vahidation

No  Compound Regresston  Cross- Experi-
validation  ment
1 26-Cl, 2034 1977 214
2 24,6-Cly 1460 1478 141
3 23-Ci, 1298 1286 137
4 26-Cly-4-Me 1061 103% 122
S 2-Cl-6-Me 1372 1451 112
6 2.6:-Me, 0697 0627 085
7 24.Cl, 03566 0536 068
8 2.Ci-4.Me o111 0061 068
9 24-Cly-6:-Me 03850 0901 0s7
10 2.4:Me,-6-Cl 0459 0448 052
1 2,5.C1, 0548 0607 032
12 pRe] 0259 0285 015
13 46-Mey-4-Cl 0249 0300 004
14 2-Me-4.Ct -0080 ~0084 ~005
15 24.6-Me, ~0150 -0193 ~007
16 2.4.Mey ~0532 ~0527 -056
17 2-Me -G48 ~0406 -061
18 Unsubstituted  ~2076 -2047 -210
R 09713 09676
N 02223 02475

as 2= X and corresponding to the connectivity
ndex of sccond order) and paths of length three
(denoted as 3 - X and corresponding to connec-
uwity indices of order three). The three connectiv-
ity indices 1 = X, 2~ X and 3 - X have not been
selected as the best three from a pool of possible
indrces, their recprocal and other combrmations,
as sometimes has been the case in multiple regres-
sion analyses. They have rather been selected as
the leading members of a sequence of weighted
paths (lagher connectivities).

Connectivity mdices 1 - X, 2~ X and 3~ X
lead to quite impressive regressions A stated
carlier, 1 — X already accounts for close to 50% of
the vanance. In combtnation with 2 - X the two-
descniptor  charactenzation  of the compounds
(three-parameter correlatton equation) account for
60% of the vanance (correlation coefficient R =
0 781). Thus 1s better than any two-parameter cor-
relation, based on traditional QSAR parameters,
even including correlations using bond dipoles or
molecular weights as descriptors an conjunction
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with the connectivity index. The improvement by
including 2 = X to the already existing correlation
based on 1 = X is substantial, even if not dramatic.
In part a reason for the achievement of only a
partial improvement 1s that 1 — X has already
absorbed much of the correlauon variance. How-
ever, if we now include 3 ~ X, in additonto 1 = X
and 2 — X, we obtain a correlation equation which
accounts for 95.5% of the vanance (a correlation
coeffrcient of 0 977). The regresston 15 also accom-
panted by an impressive reductton of the standard
deviation to S =0.223. This particular result 1s
better than a correlation based on four and five
descniptors using any combination of apparently

lausible physicoch I descriptors, such as
log P, d pK,. parachor, Taft’s stenic constants,
molar refractions etc., supplemented by quantum
chemrcal parameters, such as HOMO and LUMO
parameters and their denvatives.

The central finding — that the X mdices pro-
wide a supertor correlation of the antihypertensive
Jomdine data for the eighteen compounds chosen
— appear to be correct, providing that a chance
correlation does not play a role, In order to con-
firm this finding we undertool to examine whether
the result would be upheld by cross-validation. In
Table 5 we also report the outcome of the cross-
validation, which leads to the overall coefficient of
correlation of 0.968 with the standard error of
estimate of 0.247. The result 1s particularly strih-
ing for this data set, because there are two extreme
potency values which would be expected to give
much trouble in cross-validation. The suspicion
with which many people in the QSAR community
regard graph theoretical approaches 15 based on
musunderstandings of graphs, on a feeling that
theie is no physicochemical basts for connectisity
orrelations. Sinee “receptors surely do not per-
form edge counting”, skepucs feel that correla-
tions with graph ndices which do exist are actu-
all) a consequence of gorrclauons with some more

ful' physicoch I property which the
graph mdlces happen to correlate with. However,
the result repurted here vannot be understood in
this way, With new staustical methods, such as the
partial least-squares method, nclusion of many
sets of hghly intercorrelated parameters 1s no
longer 4 problem, and combinmg graph indices

with physicochemical indices 1n a single study 1s
practical.

COMBINED USE OF PHYSICOCHEMICAL AND GRAPH
THEORETICAL DESCRIPTORS

While the traditional QSAR parameters may
have apparent advantages in some applications i1n
this particular study, where several factors con-
tnbute to the overall molecular behavior, 1t 1s
difficult even to speculate on the mmportance of
individual  physicochenmcal descriptors On the
other hand graph theoretical descriptors can not
only do the same job, they can accomphsh it
mpressively better. Successful graph theoretical
correlations, of course, do not signal the termina-
tion, or even a duminution of the importance of
tradittonal approaches; rather, they mndicate the
beginmng of a novel alternative, sending a signal
for attention. Certainly, one needs to accumulate
more expertence and additional insights into the
potenttal of the outhned approach. We do not
even claim any gencral suitabihity of the approach
outhned for the study of structure—activity phe-
nomena involving heteroatoms. Even less do we
want to leave the impresston that the traditional
approaches have no considerable, ay yet untapped,
potential along with graph theoretical approaches
m QSAR. In fact, we believe that combined ap-
proaches using molecular properties, quantum
<hemrcal parameters and well selected graph theo-
retical descriptors are hkely not only to produce
supertor correlations but are likely to do so m a
most effictent way. While this paper has demon-
strated some advantages of mathematical descrip-
tors as opposed to physicochemical descriptors in
this particular application, the advocation of one
set of descrniptors does not preciude the use of
other sets of descriptors. Moreover, any claim to a
general supenonity of one hind of descriptors over
another hind, even if based on a larger body of
results, overlooks the possibility that yet unex-
plored desuriptors (propertics or graph invariants)
may surpass in quality those considered hitherto
It scems that the most pragmatic approach at this
tume 1s to combine physicochemical descriptors
with graph theoretical descriptors, a course which
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already has received some support [69-71). This
then represents a generalization of a more com-
mon current practice mn which physicochemical
descniptors are combimed with quantum chemical
descuiptors. Such generalized approaches are likely
to result not only in better but also in simpler
correlations than the approaches using one type of
descriptor only, if used separately.

To illustrate a relationship between properties
and connectivities as descriptors for the cighteen
compounds considered we report in Table 6 corre-
lations using traditional QSAR descriptors against
the connectivity mdex X. Such correlations may
assist one in selecting graph theoretical and
physicochemucal descrniptors in ‘admixture’. We
find that X and parachor produce quite a good
correlation (R = 0 965), not quite unexpectedly, in
view of the interpretation of the parachor in terms
of molecular surface. The magnitudes ~{ molecu-
far surface area are well simulated by the relative
magnitudes of the connectivity index [52). Also a
quite good correlation (with R =0.950) was ob-
tamed between X and hydrophobic constants
(summation over the substituent # valucs). The
correlation between X and the Taft substituent
stertc constants produced a fair correlation, not as
good as hydrophobic constants or parachor, but
still suggesting that over 75% vanance 1s accounted
for by X (R=0.881). On the other hand, the
correlation between X and quantum chemical
HOMO parameters (as well as the denved EE
parameters) are nonexistent (R=0.114 and R =
0070, respectively). These molecular orbital de-
scriptors (for the set of structures constdered) have
apparently ‘nothing in common’ with the bond

TABLE 6

Correlaions between the vanous physicocherical descnptors
and the connectivity indices for the etghteen compounds con-
stdered

Descnptor R N Cocfficrent  Constant

Parachor 0965 892 2809 ~10328

L4 0950 0.169 4397 ~17.368
L, 0881 0463 =735 28953
log P 0715 0734 6397 -27603
pK, 0430 0837 =339 13.357
HOMO 0114 0.161 0.158 -12330
LE 0071 0146 0089 72819

TABLE 7

Two-p 1 b the ndex
and selected physicochermcal descnptors

Regression R s

4,134 X ~0489 pK, ~17.573 0808 0599
2607 X +0500log P —~10465 0786 0628
6181 X ~2 212 HOMO-51 654 0782 04633
5604 X +1.988 EE~38 636 0751 0671
11052 X =1 385 7 —44 661 0701 0725

addiuivaties 1mplted by the connectivity index.
Hence, they illustrate descriptors which, figura-
tively speaking, are ‘orthogonal’ to the connective
ity index. They supply additional ‘directions’ tn
correlations 1if, on therr own, they show some
correlation with a property considered We should
emphasize that use of R, the coefficient of regres-
ston, or R?, the coefficient of determnation, as a
sole criterion for a quality of a regression, as 1s
known, 1s deficient and can be downnight mislead-
ing. Hence conclusions based on R or R? have to
be taken with due reservation. It is desirable to
substantiate such correlations with other indepen-
dent statistical cnitena, such as are given by mag-
nitudes of the standard errors, F-tests, cross-vah-
dation, etc.

In Table 7 we show several *mixed’ correlations
based on the connectivity index X and a selected
property as descriptors. We see that when X 1s
combmed with q h | descniptors
HOMO and EE fair correlations result (R = 0.782
and R =0.751, respectively). Compansons of the
correlations 1n Table 6 and Table 7 give nsight
mto the role that some physicochemical descrip-
tors play in multiple regressions We sce that there
1s a fair, but not satisfactory, correlation between
log P’ and X, the correlation cosfficient being
R =0.715. Combined log P’ and X then give a
better correlation, though the improvement ap-
pears not to be dramatic (R = 0.786). Because
log P’ alone does not perform well (R = 0.529) 1t
seems, then, that in this particular application to
clonidine-like compounds, log P’ owes 1ts correla-
tion ‘power’ to partial parallehsm with X, How-
ever, the parts in which X differ from log P’
appear relevant for the particular correlation. The
situation can be contrasted to the use of d pK as

— B =

~ -
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an additional physicochemical descniptor We see
that d pK combined with X produces a good
correlation (R =0 808), the improvement in the
correlation, however, in this case is more substan-
tial Thus should not be surpnsing in view of the
timited correlation between d pK and X (R=
0.430) It imphes a lesser ‘duplication’ between X
and d pK on one side, while the improved corre-
lation coefficient in the combined regression ponts
1o a role of d pK, which alone shows poor corre-
lTation (R =0.482), as complementary descriptor,
rather than competitive to X; i.e. they differ in
structurally relevant features.

CONCLUDING REMARKS

The complexity of structure--activity studies 1s
enormous, and different methodologies, even if
addressing imited aspects of the QSAR problem,
ought to be exhaustively explored and combined 1f
posstble. We have demonstrated, albest on a single
case of hypotensive clomdine-type compounds
that graph theoretical descriptors not only have
the potential to descnibe structural variations
molecules with “floating’ heteroatoms, but that the
accompanying descniptors arc superior to any
well-tested combmation of tradiional QSAR de-
scriptors, The result ought to draw attention to
mathematical descriptors, while at the same time
the use of physicochemical descriptors is not dis-
couraged. It should be superfluous to add that
mathematical descriptors, of which graph theoreti-
cal invanants are 1Hlustrations, have an important
advantage — an explicat structural interpretation,
By contrast, many quantum chemical descriptors
and molecular properties as descriptors are highly
convoluted, without pointing to simple structural
features directly as the dominant components of a
correlation,

Pragmatism suggests that, at lcast at the pre-
sent time, before we fully understand the mtricate
mterrelationship of structure and properties, the
best results may follow when both sets of descnp-
tors are combined, by ‘mixing’ the two points of
view. Be that 4s it may, 1t is opportune to end this
article with a quote from Max Planck (72), in-

tended for those who continue to be skeptical
regarding graph theoretical methods:

“ ..the eaperimenter cannot afford to close his
eyes to a new discovery, obtamed from another
point of view, which will not fit lus own 1deas, nor
must he treat 1t as unimportant, if not mncorrect ”.

One should not need to add that graph theoret-
Kal indies — bemg mathematical constructions
— cannot be correct! They can be useful or
useles, but not incorrect, and we leave 1t to readers
to decide which 1s the case
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The tigand-ficld regrme defines the domain of applicability and underlying reasons for the empimal success of higand-field

h y at large and the phenomenology of the

analysis Thus article reviews the

| between q

ligand-ficld method These connections provide a sound basts for the chemucal intespretation of higand field parameters Differencer

between higand-field and molecular-orbital approaches are 1dentsfied

THE LIGAND-FIELD FORMALISM

Ligand-ficld theory (LFT) addresses the spec-
troscopic and paramagnctic properties associated
with open d or f electron shells 1 transiion-metal
complexes. It is parametric. We require of the
models of such a theory that all appropnate elec-
tromic  properties be reproduced essentially
quantitatively for object systems regardless of
molecular geometry, coordination number, or d”
(/") configuration, on the same footing, and that
the op d par affording that reproduc-
tion be relatable, both empincally and structur-
ally, to chemical concepts estabhished by other
means, Hundreds of ligand-field analyses of
paramagnetic susceptibility, electron-spin-reso-
nance g values, ‘d-d’ and ‘f-f ' transition energes,
mitensity distributions, and their natural or mag-
netic arcular dichroism have satisfied these
critena. It 1s crucial to observe that, within its
proper or ‘regime’, LFT works, because, at first
sight, it ought not to.

LFT developed from crystal-field theory (CFT).
Within that approach, d (f) clectron energies

0169-7439/91/80350  © 1991 - Elsevier Scrence Publishers BV

(say) are calculated by diagonalization of the ap-
propniate d (f) basis under the crystal-field Ham-
1itoman,
N ez
Hp= L ot Ver 1)
i<y 1

n which two-electron energies are accounted for
by the Coulomb operator and one-electron en-
ergies by the crystal-field potential, Ve Vanous
models of the electrostatic, classical potential have
been entertained, ranging from hgands as point-
charges or pomt-dipoles to spatially extended
charge distributions. In each case, all operators of
€q. (1) are explicit, volving real bond lengths
and charges. The d (f) basis 1s equally explicit
for example one nught employ the 3d functions of
Clementi et al. [1] for cobalt as a dipositive cation
Whle the qualitative, symmetry aspects of CFT
remain as useful as ever, the quantitative predict-
1ons of spliting parameters and accounts of the
spectrochemical series, for example, were recog-
mized to be hopeless almost from the begnning
1935 marks the year m which Van Vieck (2,3)
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resolved intnguing confhicts m the contemporary
literature and introduced amendments to CFT
that defined the birth of LFT. In essence,
acknowledging the covalency that undoubtedly ex-
1sts in all transition-metal compleaes, he proposed
LFT as an1somorphous approach to CFT in which
the operators of the ligand-field Hamltonian,

N
Hp= DU )+ Vg (2)
<]

are to be taken as effective operators and hgand-
field splittings to be regarded as parameters. To-
day, we refer to the two-electron energes as com-
puted with an effective, or screened, Coulomb
operator, U(1, j), and the one-electron energies as
hgand-field parameters of the effective ligand-ficld
potential, ¥, ¢ It 1s also to be recognized that the
only part of the basis functions that 1s employed
exphcitly in ligand-field calculations 1s the angular
property. Matna elements of functions built from
pure d (I =2) or f (I = 3) orbitals under J#y are
mampulated within LFT: any differences between
the first and second row of the d block, for
example, are left to emerge n the parameters of
the system. Altogether, therefore, in LFT we em-
ploy effective operators within a basis whose ra-
dial character s left imphcit. One immediate con-
sequence of these differences between CFT and
LFT s the change from (calculable) free-iom,
two-electron energies — hhe B, and G, using
Racah’s notation — to parametnc quantitics hike
B, C and the nephelauxetic effect.

LFT and CFT are 1somorphous in the way they
formally separate one- and two-electron effects
and by their operation within a pure d (or f)
basis No explicit recognition 1s made of metal s
or p functions, or of higand orbitals. They arc thus
quuite unlihe molecular-orbital (MQ) theory. De-
spite Van Vieck’s illustration 2] of the effects of
covalency upon splitting factors by reference to
MO theory 1n lus famous 1935 paper, it 15 quite
incorrect to view LFT as MO theory applied to
transition-metar complexes. LFT and MO theory
do not map onto one another. Over the past ten
years, Woolley and Gerloch [4-7] resolved to un-
cover the underlying reasons for the successes of
LFT and so to provide a defensible physical basis

for the iterpretatton of its parameters. These
interrelated aims are best reviewed separately, frst
in terms of a many-clectron basis and then with
respect to the one-electron matrix clements that
define higand-field parameters

PROJECTION ONTO A d ORBITAL BASIS

The focus on a d or f basis 1s sharpened by a
review of Lowdin’s partitioning theory {8}, The
Schrodinger equation for some full many-electron
problem 1s written.

HY = EY (3

Expanding the eigenvectors withun a freely chosen
basis {®} of mnfinte size,

©
Y=Y e s e =(0 %) )
3

and defining

UARECAE 2L )
we obtain the Heisenberg matrix representation of
¢q. (3):

He= Ec (6)

Suppose we partition the basis {d} into two
groups, a and b of dimension N, and N, respec-
tively, N, will be infimtely large, in general The
infimtely numerous eqs (6) may be partittoned
sirnularly:

H,,c,+ H e, = Ec, 0]
H,,c, + Hyye, = Ec, (8)

where ¢, 15 a vector of dimension N, and H,, a
square matnx of that dimension The vector ¢,
and matnx Hy, are both of (infinte) dimenston.
H,, 1s rectangular. Provided the inverse may be
defined, we rewnte eq. (8) as

o= (E- 1y~ be)“"baca ®
and substitute it into eq. (7) to give

H,,c, + H y(E 1, — Hyp) 'Hyee, = Ec,  (10)
This compnises a set of N, equations of the form
H,.c,=Ec, (1)
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with We can, for example, make the identity

A, =H, +H,(E-1,-Hy)'H,, (1) p_(WI2y) (9712197 19)
R C AL A [CALS

where 1,, is a unit matrix of dimension N, X N,.
Solution of the secular determimantal equation,

H,,~E1,,1=0 (13)

yields N, eigensolutions whose energies are 1denti-
cally equal to N, eigenvalues of eq. (3) with eigen-
vectors expressed as (finite) combmations of the
sub-basis {®°}.

The same formal mampulations may be ex-
pressed within the Schrodinger representation [4,7)
by definmng a projection operator P, onto the
subspace {@“}:

X,
P=31%, X, | (14)
i
together with Q, onto the orthogonal, complemen-
tary subspace {®*}:
Q=1-P, (15)

and thence by wonstruction of a fimte-dimensional
Schrodinger equation,

(- E)p'=0 (16)
with
H=ot+ b H#(E) a7
where

A F(E) = HQ(E-Qy= 0:Q,) 0t (18)

We recogmze, of course, that the formal mampu-
lattons that produced egs. (16)-(18) nvolve no
approxtmation of the full many-electron problem
(eq. (3)) whatever. They mercly project the in-
fimtely large problem onto a finte basis {7}
while ‘folding n' all contnibutions from the com-
plementary subspace {$®} into the operator
AM(E). Furthermore, this reformulation does
nothing to asstst the solution of the many-clectron
Schrodinger equation, for the computation of
AS(E) 1s every bat as formudable a tash as the
ongmal problem. It can, however, suggest a useful
avenue for approximation.

for the ith eigenvalue. Here we recognize that
such is the tactic of LFT if we take {®7} as
functions built from pure d( f) orbitals and 5 as
Hpt

d d
Ef (O] | He N’.z (20)

T 7T

However, JZ of eq. (18) 15 an energy-dependent
operator 5o that the identities represented by eq
(19) are dhfferent for cach eigensolution (each i),
that is J# n eq. (19) 1s different for each solution.
By contrast, the procedures of LFT are such that
one implicitly considers one and the same effec-
tive operator oy throughout the mamifold of
d-based states that co-define the ‘hgand-field reg-
me’ Were 1t otherwise, one would not exploit a
sigle set of parameters (matnx elements of ;)
throughout the regime And the whole point of the
higand-field parametnc approach 1s to account for
the splitings (and associated propeitics) of the
manifold of 4 (f) states sumultaneously with one
set of vanables. So here 1s the root of one’s
surpnise that LFT works. That 1t does mndeed work
— that one may employ some mean hgand-field
Hanultontan and thence a mean parameter set
with remarkably consistent efficacy — must be
attnbuted to Nature providing suitable and par-
ticular circumstances Their provision 1s not wathin
the power of the user,

Rather simtlar circumstances ensure the success
of = electron theory m delocalized organic sys-
terns, There, one projects the many-electron prob-
fem onto a subspace of = functions No explicit
reference 1s made to the o bonding framework or
atomic core functions. In the manner of eq (18),
these are folded into an effective, mean Hamilto-
man. Matnx elements of that mean Hamultonian
are parametenized mm the Huckel model by the
so-called Coulomb and resonance integrals, a and
B. So LFT 1s to transition-metal chenustry what «
electron theory s to delocalized organic systems.
That both models work so well in therr own do-
mains is to be ascnbed to the functions of their

RPN

S




232

Ch and Intell Lab

y Systems 8

Fig. 1 Radial yp
and (b) low-oxdation-state complexes, of the first transition
senes.

for (3) We . 1

appropriate subspaces being largely uncoupled
from all else.

THE CHEMICAL SIGNIFICANCE OF THE LF EF.
FICACY

n chenucal terms, one sees that natural ‘sep-
aration’ of the d basis m transion-metal com-
plexes from the complementary subspace 1n terms

ligand field shft

s/p

L

group functions

Xb

bond orbital

(2) (b

of an effective removal of the d functions from
the valence shell. This is proposed strictly as a
“zeroth order’ viewpoint, for some mixing with the
d orbital takes places, as evidenced for example by
the (small) breakdown of Laporte’s rule for ‘d-d’
intensities. Furthermore, this separation is pro-
posed for Werner-type complexes — those involv-
ing metals in higher oxidation states and which
form suitable objects for ligand-field study ~— but
not for carbonyl chemistry or low-oxidation state
complexes. Radral forms of 34, 4s and 4p func-
tons are sketched m Fig. 1 for both types of
complex. The view we take here of the Werner-type
systems is that, rather like the way the 4f orbitals
in lanthanide(I11) complexes are well buried and
unmvolved 1 bonding, the d-orbitals are rela-
uvely ‘mner’ functions that overlap very poorly
with functions offered by the igands Chenncally,
this view accords well with the stability of open d
shells 1n these systems consider, for example, the
absence of free-radical behaviour of unpaired elec-
wons 1n such complexes By contrast, the much
greater mixing between d, s and p orbatals in the
more expanded electron clouds of very low-oxida-
tion state complexes define a valence shell with all

Mx

mean d orbital

Fig. 2 View of the bonding 1n hugh d tat

tal ) as

wo | steps (a) pnmary bond

g
formation between metal and complete group of ligands (b) secondary perturbation of the mean d orbitals by bond orbitals
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nine metal orbitals and chenustry dominated by
the 18-electron rule.

We therefore commend a view [9] of electron
interactions 1 Werner-type complexes as involv-
ing two notional steps In the pnimary step, firm
bonds between metal and ligands are formed by
overlap of metal s and/or p orbitals together
with appropnate ligand functions. The second, or
smaller, perturbation s the nteraction of the d
shell with the bonding functions so formed, as
sketched m Fig. 2 LFT and the expenimental
properties 1t addresses are to be seen as part of
this second step. Of course, the very interactive
nature of this process means that while d orbitals
encrgies and d electron distributions are affected
by the bonding electrons, the bond orbutals are
affected by the d electrons Fig. 2 15 to be seen as
the end product of such a cychic process In this
way, the exigencies of the electroneutrality princi-
ple, for example, will have been satisfied and
thence probed or reflected by the effects upon the
d orbitals that we analyse by LFT.

ONE-ELECTRON LIGAND-FIELD PARAMETERS

Parameters of the effective ligand-field poten-
tral are one-electron integrals. In order to gauge
therr chermcal significance we review an attempt
to forge a link between one-clectron theory and
the many-clectron formalisms above,

One-clectron theory begins with the selection of
a basis The total freedom avarlable in making this
choice 1s not linited to the techmcal question of
prefernng  hydrogenic functions to  Slater-type
orbitals (STOs) or to Gaussians but includes the
extent to which exchange and correlation effects
are wncluded at the outset. The basis functions are
defined as eigenfunctions of the one-clectron
Hamiltonian,

H=aT+ U (21)
where T 1s the usual kinetic encrgy Laplacian and
U is some form of potential energy operator. In
MO calculations, vanous forms of U have been
adopted: in early Hartree computations U ex-
cluded all reference to exchange and correlation;
in Hartree-Fock, a particular scheme for inclu-
sion of exchange is included, in X, calculations, a

quite different approach defines a basis which
includes some account of both exchange and cor-
relation effects. Subsequent computation of
many-electron molecular properties in terms of
the various orbital bases require varymg — and
usually extremely extensive — ‘correcttons’ to
provide an acceptable account of all exchange and
correlation.

In one sense, however, there exists a ‘best’
choice of orbital basis which, apart from trivial
umtary transformations, 1s unique That such a
choice exists 1s established by density functional
theory [10,11], the central theorem of which shows
that there exists a set of orbitals {{} for the
system ground state trom which one may compute
the exact total electron density simple by forming
the sum L$*$; over populated orbutals. no further
‘corrections’ are required, Unfortunately, the theo-
rem provides no practical help in calculating what
these ‘best orbitals’ are, so the many-electron
problem remains as difficult as ever. However,
their existence provides the basts of a structural
analysis of a model hke LFT.

Let us suppose we have the form of the poten-
tial energy operator m eq (21) that leads to the
“best orbitals’ for the system. 1t takes the form of
a functional of the total electron density p:

U=U(p) (22)

and, for the ground state at least, the one-electron
Hamultonian (eq. (21)) defines the solution to the
given problem entirely, Now we must recall that
the hgand-field procedures and eq. (2) exphiatly
separate d-d nteractions from all others In
mumcing this artificial but established structure of
LFT, we define a new potential energy operator ¥
as a functional of the total clectron density nunus
that of the d electrons*

V= Ulo-p,) @)

That d clectron density remams to be defined,
cyclically, in a moment. We thus construct an
orbital basis of hgand-field orbutals (LFO) as no-
tional solutions to the one-clection Hanultoman,

H=aT+V (24)

The LFO 1s then expressed as a linear combina-
tion of fragment orbutals, rather as molecular
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orbitals may be expanded in the linear combina-
tion of atomic orbitals (LCAO) system However,
the fragment orbitals are chosen here n a differ-
ent way We divide up ¥V into spherical and
asphencal parts, (V') and V’, respectively.

Va(Vy+v’ (25)

Then, solutions of the mean one-electron Hamilto-
mian, O,

HOp=(T+(V))o=ed (26)
take the usual central-field form,
o=R{7)Y}(0, ¢) (27

50 spanning a series of functions we may label as
s, p. d. f.... We select the d funcuon of the
mean Hamiltonian # — which we henceforth
call the mean d orbitals of the system — as one
part of the fragment orbitals of the LFO, which
latter are exact solutions of the hamiltonian 57 of
eq. (24). So

Viro=¢+ 9 (28)

where ¢, represents all other functions required to
span the rest of #® as well as o#M = V", the
aspherical part of ## It 1s the electron density in
these {¢,) that 1s subtracted in the definition of }”
m eq (23) Though notional, the procedures so far
are exact, However, to make contact with the
reality of LFT, we must now approximate and
presume that the ‘best orbutals’ for all excited
higang-field states (but not for others) are some-
what sinmlar to each other and to those of the
ground state n short that the *mean d orbuals’
are also a mean throughout the higand-field reg-
tme. Insofar as this assumption 1s satsfactory,
LFT should ‘work’; msofar as LFT works, the
assumption may be deemed to be satisfactory. At
this stage, notice that the precise radial form of
the mean d orbutals (or, of course, the mean f
orbitals if one 1s dealing with a lanthanide prob-
lem), though unknown to us in practice, is de-
termined by and for the system m question In thas
connection recall that the radial part of the
ligand-field & basts 1s Jeft imphait in hgand-field
procedures.

In principle we now have the basis for nterpre-

ting one-electron hgand-field parameters through
the relatronship

(9 1Vir [€0) = ($1ro0 197 | ¥1ro) (29)

However, little chemical transparency would de-
rive from a study of this relatonship, for the
LFOs refer to the molecule as a whole At this
point, one recognizes that one of the most power-
ful 1deas throughout chenustry 1s the notion of the
functional group. The power of modern ligand-
field analysis 15 only realized when ihis notion is
blended with the theoretical structure we have
outlined above: this blend defines so-called cellu-
lar higand-field (CLF) theory {5,6}.

In the CLF model, we consider the space around
the metal as divided up mnto N contiguous volumes
or ‘cells’, In general — though there s an 1m-
portant exception we have no space to discuss
here — we arrange these cells 5o as to enclose one
M-L ligation each We then consider the total
molecular effecive ligand-field potenual as a sim-
ple sum of all cellular potentials Part of that
supposition 1s the 1dea that the sources of the
cffective potential 1 any one cell are physically
located in that cell Such is not the case in CFT,
for the potential of any pomt charge 1s sensed 1
all regions of space. Here we presume that dielec-
tric screening by all electrons in the bonds and
cores 1s such as to render effective hgand-field
potentials spatially local. Consider then the effects
of this local effecive potential upon the metal
mean d orbitals in a given cell

After some simple algebra [6.7]), which we do
not review here, analysis of the relatonship (29)
within a single cell yields an expression for the
energy shift of orbital d, as.

ex~(dy [ ]dy)
1 (1)
+3 (d\1# ’XA)(_XH-"” 1dy) (30)

(d"(xx

X

These orbital energies, { e, }. are the parameters of
the CLF model. Here we write 4 for the ¢, of eq
(29) and x for functions built from the ‘rest’
functions ¢, of eq. (28). All functions are referred
to the local, cellular frame and transform with
symmetry A with respect to the local pseudosym-
metry. €, 1s the energy of the mean d orbitals and
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&, the mean, or expectation value energy of X,
The first term in eq. (30) 1s called the ‘static’
contnibution and the second, the ‘dynamic’ contri-
bution It s sufficient for the present illustration
to focus on an M-L ligation with local C,,, pseu-
dosymmetry. lower local igation symmetries have
been studied in detail and reviewed {12}. In C,,
symmetry, A=¢, 7 or 7. & interactions are
neglected. It has been shown that for A=o, the
static contribution is likely to be several tumes
smaller than the dynamic and, for A ==, that the
static contribution should be neghgible. Our dis-
cussion focuses, then, upon just the dynamic part
of eq (30). Both total, 5 and aspherical, s#®,
parts of the Hamiltoman within the given cell
transform totally symmetnically and so ensure the
dentical symmetry speciation of dy, and x, ecq
(30) In G, symmetry, therefore, a d, orbital
mnteracts with x, orbitals exclusively, d,, with
Xaxe and d,, with x,, as represented m Fig 3. In
short, the local cellular potential matnix 1s diago-
nal:

do d, dmv
d, {e, 0 0
d,|0 e, O (31)
d,, {0 0 e,
¢ k4
dy ;’
(a) (b)

ds dr
Tocal Xx
Xe

for ligand ¢ donors for ligand = donors

with the local cellular parameters,
ex= (dyjvipldy);  A=o, 7, m, (32)
where vig 1s the effecuve hgand-field potential 1n

cell c. Taking eq (31) together with eq (30) and
remarks above, we have

i d '_;f(l) 2
e~Y _(_x(__{_lXx)_l (33)
x d XA
and
wm Ix X ij(l)
P A % W 34
X d Xx

Observe, mn passing, how the effective ligand-field
operator is energy dependent but that this s ex-
phictly bult into the ultimate parametenzation.
Further encrgy dependence, which 1s ignored, 1s
tmplict within the ~ sign and in the concept of
mean d orbitals.

Now one can mvoke the simple chemical rea-
soning to sumplhfy these sums for the purpose of
mterpretation. Thus, we observe that the domi-
nant contnbutions to e, tn eq. (33) will be those
with larger numerators and smaller denominators.
M 15 the aspherical part of the Hamiltonian
(potential) in that cell and so maximizes away
from the metal core. Furthermore, 1t relates to the

Xnx

for ligand x acceptors

Tig. 3. Sceond step of Fig. 2 wathin the lokal CLF scheme, (3) for o bonding, {b) for 2x bonding {23, in the plane normal 1o the

paper, 1s siular),

Y A
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clectron density of the complementary set (the
‘rest’) and so to all occupred ‘rest” orbuals.
Numerators 1n eq. (33) will therefore be largest
when x, maximzes near these regions. De-
no ors will be llest for x, closest i en-
ergy to the mean of orbitals. All in all, we expect
ey to be dominated by those x which are most
proximate to the d orbitals in both space and
energy. that 1s, by the bond orbitals. We conclude
that the sources of effective ligand-field potential
are the bonding ¢lectrons and, in this sense, assert
that LFT and observable hgand properties probe
the underlying chemical bonds

It 1s worth emphasizing the mamm points and
¢cyclic nature of the arguments summarized in this
article Both the many- and one-electron construc-
tions refer to the projection of the full many-elec-
tron problem onto a d basis. In principle, a
complete description of all exchange and corzela-
tion effects are built (‘folded’) into the structure
though in practice, of course, averaging 1s imphcit
within the process, mamifested first within the
mean d orbitals basis and secondly within the
interpretation of the e parameters as being
domunated by one or two bond functions. Subse-
quent rationalizations relating empincal ¢ param-
eters to bond polarizaton or shape, atomic
polarizabilities or whatever, are qualitative and
must be judged by the msight the, bnng to the
enterpnise. The schemes discussed above have
never been offered as routes for quantitative ab

Fxpetiment
P AN
| .
NS X¥ | 17
- T A\ N
—
ENDO et 1 Hrickel
Hartree-Fouk
i
3
Haxtree
\
Extenaded kel
Wiltberg Hetmholtz
Angular Overlap Model
Tig. 4. Rel hips between comp } method:

o computation of hgand-field propertes,
though they could be They have the virtue, how-
ever, of making formal connections between the
phenomenological hgand-field procedures of eq.
(2) and accepted quantum mechanical principles
and of so providing, via ¢q (33), a defensible basis
for parameter interpretation. The whole structure,
1s of course, predicated on the assertion that the
higand-field method ‘works’. One further aspect of
the cyclic nature of our exposition 1s that part of
the justification for that assertion 1s provided by
the chemiwcal consistency of the interpretations
that have emerged from scores of CLF analyses

THE PLACE OF LFT IN COMPUTATIONAL CHEM-
ISTRY

LFT does not have the purpose of providing a
model for the computation of molecular proper-
ties in general Its domain s restricted to the
spectroscopic and magnetie electronic properties
of open d or f shells i transttion-metal com-
plexes of the Werner type Furthermore it 1s para-
metric  Nevertheless, its underlying structure 1s
such as to separate d (f) electron properties from
all else and so to probe the chemical bonding that
surely should be its central object By bemg ex-
cused the tasks of bonding theory 1t leaves to
Nature the fornudable tasks of accounting for the
exchange and correlation effects that are so vexa-
tious for computational chemistry at large. Bonds
are formed, the clectroneutrality principle 1s satis-
fied, the cut and thrust of balancing electron dis-
tribution 1s enacted: and LFT probes the end
result. That 1s why LFT 15 so effective i reproduc-
ing expertment — far more so than even the best
ab imtio computational techniques — but only
within sts proper domain,

wn Fig. 4 a tree-like scheme s represented [13)
showmng the relationship of one computational
method with another: 1t 1s not intended to be
comprehensive. It shows for example how conven-
tional MO schemes do not map onto LFT and
how the angular overlap model (a precursor to the
CLF), being an MO scheme at root, is of a quite
different 1lk to that of the CLF,
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Discussion of “The ligand-field regime”
by M. Gerloch

Larry R Falvello

Texas A & M Unmwersuty, Laboratory for Molecular Structure and Bonding, Colege Station,
TX 77843-3255(US A )

In these remarks I will attempt to place a
perspective on the vahdity and the domamn of
apphcability of the hgand field theory that Dr
Gerloch has discussed.

It 1s easy for a working chemust to be drawn
ashore by computational sirens, since many theo-
retical computational methods are so attractive
from a distance and so easily nusinterpretable as
offering methodology with a hint of permanence.
When storchiometry was new, chermstry had its
first ‘reduce-the-entirety-of-chemistry-to-compu-
tation” tool With the discovery of quantum mech-
amcs, the gual of computing molecular properties
from first principles was conceptually achieved.
Putting this result into practice has turned out to
be a formudable task, and is today a major area of
on-gomg chemical rescarch. And once 1t has come
to frution, 1t will face the equally challenging
requrement of reducing the complex molecular
orbital descriptions to results n a paradigm useful
to the working chemust.

Ligand field theory, as we know 1t today, 1s a
conceptual development purely within the realm
of transition-metal chenustry. It docs not belong
to, nor is 1t denved from, the molecular orbital
theory Like the molecular mechanics used n
orgamc chemistry, today'’s higand field theory is
based on concepts derived from a large body of
knowledge within its own chemical domain.

Although one may feel a loss of satisfaction at
first, in using a bonding theory not derivable from
physical cosmology, the benefits of using the ligand
ficld theory are immediately obvious and allow a

0169-7439/91/503.50  © 1991 ~ Elsevier Science Publishers BV,

fuller appreciation of the purpose of chemucal
theory Ligand field theory 1s ngorously vahd
within sts domain The results are directly peru-
nent to bonding And perhaps most importantly,
the theory can be used by a chemust ‘mn the lab’

Now, just what are the results that one obtains?
The cellular ligand field theory 1s used to describe
bonding in mononuclear transition-metal com-
plexes. The parameters describing bonding be-
tween each ligand and the central metal, are van-
able, they are adjusted to produce the best agree-
ment between the observed properties of the com-
plex, and those calculated from the theory When
a computatton 1s fimshed, the user has a set of
parameters describing the strengths of the various
bonding interactions between hgand and metal
Each parameter represents a parbcular component
of a particular bond — for example, there will be
separate paramecters for the sigma and p1 bonds
between each hgand and the central metal (And
the pt interaction can be further divided by direc-
tion, af this 1s appropriate )

The immediate utihty of such a scheme s clear
It 15 mdeed convenient to compare one complex to
another mn terms of lecal bonding interactions
Most importantly, 1t ts possible within this regime
to speak of computational results directly tn terms
of bonding propertics. And there 1s a lagmappe.
Tius sort of calculation is effictent.

I want to touch on the hmutations of hgand
ficld theory. I think that the cellular higand field
theory, although rather mature 1n its treatment of
the first transition senes, can stil benefit from
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further exploration of the second and thurd rows
of the d-block, and from a treatment of the f-senies
There seems still to be un-tapped potential, both
for development of the theory and for better un-
derstanding of complexes of the heavier elements.
It 1s difficult to say — even to speculate —
whether the fundamental concepts underlying
hgand field theory mught usefully be applied to
non-Wernenan inorganic chemustry It 1s ap-
propniate to add at this poimnt that the numencal
algonthms used mn these calculations are both
mature and robust, and should not need major

development unless the theory itself or its realm of
applicability changes sigmificantly.

When one considers the panorama of computa-
tional chemustry today, 1t 1s clear that the variety
of the types of calculation provides one of the
field’s richest properties The theory that Dr.
Gerloch has descnibed 1s among those modern
theones that provide useful bonding information
to chemusts Inorganic chemustry would be poorer
without 1t — and, I believe, richer with further
development of 1t
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Discussion of “Maximum entropy as a phasing tool
in macromolecular crystallography”

Larry R, Falvello

Texas A&M Unwversuty, Laboratory for Molecular Structure and Bonding, College Stanon,
TX 77843-3255(US 4)

The algonthm that Dr Prince has described
once agan opens the possibility that large-mole-
cule structure determinatons will one day be done
with something approaching the facility now en-
Joyed only by small-molecule diffractionssts

It has been true unul quite recently that the
major practical and theoretical advances in the
science behind crystallography have been applied
casily and naturally to the purpose of facilitating
smalf structure determinations, while macromolec.
ular crystallography has recewved less benefit. The
means of sofving structures via Patterson synthesis
{1,2}, the discovery and development of the direct
methods {3,4}, and the mvention of the four-circle
diffractometer {5) have all had far greater facilitat-
ing nfluences on small molecule science than on
large. The maxumum-catropy methods may come
to be an important faciltating influence n macro-
molecular work,

In putting a context around the maximum en-
tropy method as a phasing tool, 1t is worthwhile to
examine the phasing tools used 1n small-molecule
work, as they would be viewed 1n importance by a
pracationer in the field. (Professor Hauptman has
described the solution of the theoretical problem
of determining phases from a set of amphtudes
{6]. It is interesting to see that practical and theo-
retical advances can follow different, though re-
lated, courses.) Before the advent of the direct
methods, one could attempt to determine phases
by model building, or by application of the Patter-

0169.7439/91/80350  © 1991 = Efsevier Saence Publishers BV

son function, a self-convolution of the structure
which can be calculated 1n a phascless transforma-
tion, These methods, as viewed by today’s pract-
tioner, rely on one of more of the following (1) a
non-uniform distrsbution of electron density; (2)
the presence of useful Symmetry elements, and (3)
a priont chemzcal knowledge of the contents of the
asymmetric umt. In practice, these methods often
depend on the skill and expenence of the practs-
tioner.

The phase problem was solved 1n prnciple (for
large and small systems) with the discovery of the
Hauptman-Karle determinants, the non-neganv-
1ty of which 1s a necessary consequence of the
non-negativity and atomicity of electron density
within a crystat. Of course, solving the problem m
pracuce was another matter. The determunants, n
their most general form, simply were computa-
tonally 100 difficult at the time of thewr discovery
to yield a closed form numertcal solution for a
8ven crystal structure. They did, however, yield
the means for achteving a practical solutron 1o the
phase problem,

The third order determnant, D, (eq. 1), yields
an expression on the basts of which certamn values
of the combination (¢_, + i+ Gy ) can be ruled
out if the amplitudes are large enough. (In the
case of a centrosymmetric crystal the phases ¢ are
restricted to values of zero and =, and the theory
develops slightly differently.) However, even when
the three-phase combmation cannot be de-
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termuned with certainty, one can stll apply prob-
ability theory to establish an expected distnbution
for 1ts value [7-10).

1 U, U,
Dy=|U_, 1 Ui_p| 20 1)
U U 1

The application of probability theory thus be-
comes an mmportant area of work i the phase
problem. The result of prime importance for prac-
tical application was the tangent formula (eq 2),
which gives an indication for a phase of a reflec~
tion h 1n terms of the phases and amphtudes of
other reflections which can participate with h
third-order Hauptman-Karle determunants. The
tangent formula 1s used m conjunction with 1ts
vanance (11}, from which inferences are drawn
about the rehability of the mdicated phase
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The tangent formula served as the launch pad
for the next important practical developments —
the multiple tangent method [12] and the popular
computer program (MULTAN) employing 1t [13}
This was the development which finally allowed a
rapid growth in the number of laboratories con-
ducting crystal structure analyses, and the con-
comutant growth in the importance of crystallogra-
phy to chemusts Further refinements in methodol-
ogy and more efficient algonthms and programs
[14.15] led to further rustication of X-ray structure
determmation, as the esotenic aspects of the phase
problem became buried 1n packaged protocols.

Meanwhile, the probablity theory that allowed
the direct methods to stimulate the flowerning of
small-molecule diffraction work, proved mitially
to be 1ts undoing 1n large-molecule work, since the
reliability of a phase indication changes inversely
with the square root of the number of atoms in the
cell. So macromolecular diffractionists have not
been able to share fully in the practical benefits of
the solution of the mathematical phase problem.
Rather, the labor-tntensive multiple isomorphous
replacement method has remained a workhorse for
protein structure determination,

Now, where does the principle of maximum
entropy fit in with all of this? The important
conceptual property of maximum entropy is that,
like the Hauptman-Karle determinants, 1t 1s con-
sistent with the analysis of data ansing from a
non-negative electron density distribution {16,17)
The principle of maximum entropy has also had a
practical problem in common with the de-
termmantal equations — useful, widely applicable
numerical algorithms for diffraction analysis have
not appeared as obvious consequences of theory.
Thus, the use of the dual method that Dr Prince
has described here and elsewhere [18] 1s a practical
development which has mented a thorough test.
The examples we have seen today show the useful-
ness of the algonthm While the clanfication of
nosy electron density maps 1s valuable and itself
would justfy full exploration of the method, 1t 15
m the a priort determination of phases that I
believe the maximum entropy method can be most
profoundly exploited.

The maximum entropy method has 1ts roots m
probability theory, as Jaynes has explamned m
detail [19] The modern developments by Shannon
[20] (for information theory) and Jaynes represent
the chmax of a long conceptual development.
Whule closely tied to probability theory, the maxi-
mum entropy method, i its most basic notion,
formalizes prior ignorance of a system and allows
experimental data as constraints It does not em-
ploy conditional probability distributions, and ap-
parently does not suffer from a loss of efficacy
with increasing size of the problem. Conswdening
all of this it 1s natural to regard the maximum
entropy method as a logical and potentially
powerful extension of the direct methods with
promuse for macromolecular diffraction studies
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Abstract
Carey, WP and Wangen, LE., 1991 D h 1 ¢h of p ! using visible spectrometry and
M\t te ch hods Chi and Intelligent Laboratory Systems, 10 245-257
Two ch 1c analysis approaches for rapidly ng samples are p d The first method 1s for determuning Pu(lil)

and ntne acid concentrations by using the multvanate calibration technsque of partial least squares (PLS) regresston Quantitatton
of plutomum using 1ts visible spectrum 15 straightforward, however, the effects of mitnc actd on the Pu(lil) absorption spectra are

subtle, and nitne acid quantitation from the absorbance spectrum 1s more difficult In thuis study PLS regression 1s successfully

applied to quantitate both plutonium and mitne acid by using the

d in the absorp spectra of app

(4

Eval of the calt models, using test samples that span the range of the calibration concentrations, gave
pred; with the dard error of the calib models,

S dly, pattern hods are used to tigate the cifects of vanous amounts of mitnc acid, fluonde, or oxalate on
visible spectra of Pu(IV} soll The methods enable g estimates of the solution p which can p lly be
used to adjust solution prop to desired specif The mamn pattern recogmtion methods employed are nearest neighbor

Tassif; and paincipal comp analysis

DETERMINATION OF Pu(lil) AND NITRIC ACID

Plutonium can be precipitated from nitne acid
solutions by forming an insoluble oxalate salt of
Pu(111). However, the concentrations of both total
nitric acid (CHNO;) and oxalic actd affect the
solubility of the Pu(IIl) oxalate product [1,2].
Pu(lII) oxalate solubility is at a minimum between
0.5 to 1.0 M nitric acid and with a 0.05 to 0.1 M
stoichiometric excess of oxalic acid. At these con-
centrations the solubility of Pu(IIlI) ranges be-

tween 2 and 20 mg/l. At higher nitne acd con-
centrations, the solubility of Pu((IHI) increases; for
example n 20 M mtnc acad, the Pu(Ill) con-
centration sncreases tenfold. There are also indica-
tions that increasing the oxalic acid concentration
above 0.2 M will lead to increased solubibity of
the plutomum. To assist wn optimizing solution
conditions for the precipitation reaction of Pu(IIl)
oxalate, it would be beneficial to have a rapid
analytical method for estimating the concentra-
tions of plutonium and nitric acid.
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In thus study we evaluated a method based on
partial least squares (PLS) regression for predic-
ting both Pu(IH) and mtric acid concentrations
using the visible absorption spectra of solutions
contamng the species of interest Several tech-
niques based on visible absorption spectroscopy
have been developed for estimating Pu(IH), and
quantitation is fairly straightforward [3-6) How-
ever, determination of the mtnc acid concentra-
uon from the visible absorption spectra is more
difficult because of the subtle effects of nitric acid
on the spectrum. In this paper we demonstrate the
use of PLS for extracting the small signal of the
nutric actd effect in the presence of a much larger
signal caused by the Pu(III) absorption. This in-
formation provides a measure of nitric acid con-
centration that can be used mn studying the pre-
cipitation reaction.

The fundamental theory and applications of
PLS have been investigated by several researchers
[7-11} PLS uses a large part or all of the spectral
data pomnts to develop Iinear combinations of the
spectral absorbances that correlate with the ana-
Iyte concentration vector. The PLS regression pro-
cedure is based on an algonthm in which the
scores are orthogonal. This method 1s simular to
prncipal component regression in that the spec-
tral response matrix 1s factor analyzed mto or-
thogonal vectors based on the vanance. However,
it includes information from the analyte con-
centration vector in the matrix decomposition pro-
cedures The model built by the PLS algorithm
between the spectral and concentration variables
during calibration 1s different for each analyte in
so far as their effects on the spectra are different.
Two separate PLS models were developed, one
each for Pu(III) and nitnic actd Using the models
developed during calibration, we predicted analyte
concentrations 1 several solutions not used m
calibration.

Experimental

All chemicals were reagent grade, except for the
plutonium nitrate stock solutions, Plutonium
nitrate stock solutions were obtained by dissolving
PuO, in CHNO,/HF, followed by fluoride re-
moval using ion exchange. The concentrations of

these stock solutions were determned by standard
radiochemical methods based on gamma-ray spec-
troscopy with a relative standard deviation of 0.5%
[12). We prepared a 25-sample calibration set and
a 6-sample test set by performing volumetnc dilu-
tions of the stock soluttons and adjusting nitric
acid concentrations These solutions were pre-
pared to cover the acid range Nitric acid con-
centrations were determined by a standard ad-
ditron method [13).

We recorded spectra between 500 and 880 nm
on each sample using a 0.2 cm path length flow
cell. The spectrometer for these expenments was
an LT Industries Quantum 1200. Ths instrument
allows for the remote placement of sample cell
and detector 1 an 1solated glove box, with a
fiber-optic bundle transporing the hght between
source, sample, and detector. The resolution ob-
tained with this mstrument 1s on the order of 1 nm
with the scan for the visible region requining 200
ms, For each sample, ten 200-ms scans were
acquired and averaged.

Data analysis was performed using a PLS pro-
gram developed at the Umversity of Washington
{14}. This code was implemented on a VAX 11-780.

Results

Visible spectra of the plutonium species appear
m Figs. 1 and 2. Fig. 1 shows the sensttivity of
several Pu(iIl) absorption bands n solutions con-
taining 2.0 to 29.9 g/1 of Pu(1ll). The mitnc acid
concentration 1n these four samples was ap-
proximately 1.3 M. In high-precision analytical
measurements, the bands at 565 and 601 nm are
commonly used to quantitate Pu(III) after adjust-
ment of solution condittons. The effect of varying
nutric acid concentration on these spectra 1s il-
lustrated in Fig 2 where Pu(IIT) was held constant
(6.0 g/)) and nitnc acid was vared from 0.6 to 2.3
M. Thus effect 1s most readily observed at 565 nm,
where the absorption peak tends to narrow or
become more symmetrical with increzsing nitric
acid concentration, and between 750 and 825 nm,
where a change in one or more underlymg ab-
sorbance bands causes small changes i the spec-
tra,
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Fig 1 Absorbance spectra of Pu(Ilf) from 20 t0 299 g/1

Using the 25-sample calibration, separate PLS
models were built for Pu(Ill) and mtric acid. All
varables were mean centered and scaled by their
standard deviation before the model was built.
For both models the number of component vec-
tors to use was determined by cross validation
(alternating one-sample-removed method), and the

Pu(ii)
29.9 g/t
199 ¢/I

60 g/l
2.0 g/!

8000 8500

final models included all 25 samples. Table 1
shows the percentage vaniance explamed for these
calibration samples by the PLS model for both
Pu(Ill) and mitric acid and the spectra The furst
component explams 94 35% of the vanance n the
spectral responses Evidently Pu(IIl) changes are
the cause of this because 98 80% of 1ts vanance 1s

0200
A
8 6.0 g/1 Pu(Itt)
01604 C
A= 06 M HNO3
o B=14M
2 o104 C~23M
o
Q
o
5 cosot ABC
<
00404
0000 + : + + + +
5000 S500 6000 6500 7000 7500 8000 8500

Wavelength (nm)

Fig. 2 Effect of mtnc aad on Pu(lll) absotbance spectra Nitnc acid vanes from 06 to 2.3 M with a constant 60 g/1 Pu(ill)

concentration
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Fig 3 Actual Pu(lIl) versus predicted Pu(IIl) based on a two-latent ble PLS model

explamed by this component. This 1s as expected
on the basis of Fig. 1. Nitric acid. however, has
only 578% of its vaniance described by the first
PLS component. For mtrnic actd more of the nitnic
actd variation 1s explained by components that
explain Jower amounts of spectral vanance. Be-
.ause very little of total spectral vanance 1s used

to model mtric acad molanty, we expect poorer
results.

The accuracy of a multivanate model can be
visually examined by plotung the actual calibra-
tion concentrations versus the predicted values for
each sample. For Pu(Ill) the 25 sample concentra-
tions are plotted versus thewr estimated concentra-
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Frg. 4. Actual mtne aad versus predicted mitne acid come from a six-latent. ble PLS model.
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These samples were prepared using the same tech-
niques as for the calibration samples. Table 2

TABLE 1
Vanance descnibed by PLS models for Pu(llf) and nitne aad
Latent  Spectral Pu(Ill) Nitncacid
vanable  Response Exch Total Each Totl
Each Total (%) (B (® (%)
& ® Teul { the stand
[+ 10N
1 9453 9453 9850 9880 of the
2 161 9814 116 9996
1 9435 9435 578 578
2 181 9617 2955 3534
3 351 9968 117 3651
4 014 9982 2812 6463
s 005 9987 1691 8155
6 002 999 152 9307

tions using a two-latent-vanable model shown 1n
Fig 3. As expected, Pu(IIl) is well modeled with
an r? statistic of 1.00 and a standard error of 0.20
g/1 Fig 4 provides a sumilar plot of measured
versus predicted concentrations for nitric acid
using a six-latent-vaniable model. In this case the
model describes the overall mitnic acid effect on
the spectra but with a greater degree of error than
the Pu(III) model. The r? statistic for the nitric
acid model was 0 93 with a standard error of 0.18
M.

A better measure of the validity of the calibra-
tion models s to examune that predictive capabil-
ity using samples not included in the calibration
sample set. To validate the constructed models, we
analyzed a test set contaiming six samples with
known Pu(lll) and mitric actd concentrations in
the same manner as the calibration set samples

TABLE 2
Prediction results for test set samples

comp the lting predictions with known
values. The calibration model is validated if the
predicted values of unknowns are within the
standard error range of the model, which 15 a
d deviation of the model
residuals. For example, approximately 95% of fu-
ture samples should fall within twice the standard
error if the unknowns come from the same popu-
lation as the standards For Pu(IH) with a stan-
dard error of 0.20 g/1, all of the predictions were
within two standard errors, wath four of the six
predictions within one standard error. For nitric
acid all predicted values are wathin the two stan-
dard error hmit (0.13 M CHNO;) estimated by
the model, and half of these samples are within
one standard error. The estumated standard errors
of prediction were 0.25 g/1 and 023 M for Pu(Ill)
and mitic acid respectively, which 1s shghtly
greater than that of the cabibration set for both
analytes Although the number of samples was
Iimited in both calibration and test sets, there was
no statistical difference between the standard er-
rors based on an F-test companson The results of
this test set provide confidence that both the
Pu(IIl) and nitric acid models are valid over the
range of concentrations normally encountered in
the plutonium oxalate precipitation studies

We have demonstrated the use of the Pu(III)-
nitric acid absorbance spectra coupled with PLS
regresston for the determination of Pu(lII) and
nitric acid concentrations over the analyte ranges
of 1.99 to 29.9 g/1 plutonium and 044 M and

Sample Pu(lil) (g/1) Nutne acd (M)
True Esumated Dafference True Esumated Dufference

1 1.99 200 001 198 196 002
2 597 599 002 115 147 032
3 299 303 04 107 092 015
4 199 197 02 213 247 034
5 467 462 005 208 197 01
6 156 152 04 093 116 022
Standard error of prediction 028 023
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3.08 M nitric acid The precision of these predict-
ions is suitable for studying the effects of oxalic
acid and nitric acid concentrations during the
precipitation of plutomum oxalate. Although
greater precision could be obtained using other
more complex methods, the information gained
from these spectral measurements 1s adequate for
real-time analyses The coupling of multivariate
regression techniques with absorbance spec-
troscopy provides quantitation of both Pu(III) and
autric acid from a single, easy-to-perform spectral

ement, thereby hfying the instrumen-
tation used 1 studying the precipitation reaction.

QUALITATIVE DETERMINATION OF Pu(iV) COMPLEX
COMPOSITION

The Vis-NIR absorption spectra of Pu(IV) m
mitric acid have several mtense bands [15} The
number. position, and intensity of these bands
depend on the total nitnc acid (CHNO,) molanty
and the plutonium oxidation state The spectra
may also be mfluenced by the presence of other
cations and anions Thus, 1t was hypothesized that
Vis-NIR absorption spectroscopy could provide
mformation important for the chemical characten-
zatton of acidic plutomum solutions Such nfor-
mation could be used to chemically adjust such
solutions before therr treatment by 10n exchange.
Ths study was designed to determine the effect of
fluonde and oxalate on the chenustry of Pu(IV)~
nitric acid solutrons as evidenced by changes n
therr spectra. Fluonde and oxalate complexes of
plutontum do not adsorb to the i1on exchange
restns being used 1 thes study.

The research questions posed were
- How many different absorbing species are pre-
sent i the plutonmum solutions ranging from 4
M to 10 A CHNO, mn the presence of either
fluoride or oxalate?

What spectral changes result from the addition
of fluonde or oxalate to Pu(lV)-mtrie acid
solution?

Can the distnbution ratios (R,s) and imual
concentrations of nitric acid, plutonum, fluo-
nde, and oxalate be predicted from the Vis-
NIR spectra of the solutions?

4

i

— Can we develop a classification procedure using
Vis-NIR spectra that will separate good solu-
tions from bad ones with respect to 1on ex-
change behavior (as defined by R,s)?

Experimental

Solutions and spectroscopy

The data sets used n this study consisted of
spectra collected from two different expenments,
which were 1dentical except for the substitution of
oxalate for fluonide 1n the second experiment. The
solutions used are described 1n Table 3. Nitnc
acid molanties ranged from 40 to 100. Fluonde
and oxalate concentrations ranged from 837 X
107° A 10 335X 1072 M plus a zero value For
all fluonde and oxalate concentrauons, two differ-
ent concentrations of Pu(IV), 8.37 X 10~* M and
4,18 X 1072 M, were used The spectra from solu-
tions contammng no fluoride or oxalate are com-
mon to both data sets.

Al the spectra were recorded after sufficient
tme for the solutrons to equilibrate with a Quan-
tum 1200 Vis-NIR spectrometer from LT In-
dustnies The wavelength regron recorded was from
400 to 880 nm m 0 4-nm mcrements The solutions
were contacted with amon exchange 1esin (40-70
mesh Lewatit MP-500-FK) after therr spectra were
recorded. The R, values were calculated by using
instial and final plutonium concentrations for the
fluonide data. The R, analyses are not presented
for oxalate data.

Data reduction, analysts, and interpretation
Preprocessing the spectral data consisted of
several steps that were not always performed, de-

TABLE 3

Composttion of solutions used for effect of fluonde or oxalate
on spectra of Pu(IV)-mitnc acd solutions *

Nitnc aad AMSMGOMTMBMOOMIWM

Plutonium 83TX1071 M, 418X 1072 M

Fluonde or 000,837X10 2 M, 167x107% A1,
oxalate 2511073 M, 335107 M

* At each combination of mine acid molanty and plutomum
I g either fluonde or oxalate at
the ind d were prepared
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pending on the particular study objectives. To
reduce the numbcr of variables that the computer
programs must handle, all the spectra were re-
duced from 1200 to 600 absorbance values per
spectrum by performing a two-pomnt average of
successive absorbance values. Occasional baseline
shifts were corrected by a simple baseline subtrac-
tion method For each spectrum this mvolved
determining the minimum absorbance value, a,,
in that spectrum; computing the average of a;..;,
a;, and a,,y; and subtracting this average from
every absorbance value in each spectrum. More
sophisticated metheds of baseline correction for
these spectra woula be difficult to implement be-
cause the spectra are so complex. Absorbance
values approached basehne in only one or two
spectral intervals. To adjust for different con-
centrations of plutonium 1 different data sets, we
normalized the spectra to a sum of 1.0, af =
a,/(Sum a;), k=1 to 600 for each spectrum.
However, this normalization is not done when the
best model for predicting plutonium concentra-
tions is desired.

Data analysts methods consisted maimly of
variations of the mathematical-statistical proce-
dures most commonly referred to as principal
components analysis. All of these methods involve

decomposition and analysis of a spectral data
matrix whose individual rows consist of the Vis-
NIR spectrum of one of the experimental solu-
tions under study, The specific methods used were
pattern recognition based on principal compo-
nents modeling (SIMCA) [16], pattern recogmitron
based on nearest neighbor classification [17], pat-
tern recognition based on other methods con-
tamed in the ADAPT package [18], and principal
components regression {19,20)

Results

For each data set, there are 70 spectra corre-
sponding to seven CHNO, molanites, five fluo-
nide or oxalate concentrations, and two plutomum
concentrations (2 X 5 X 7 = 70). Thus, we have a
large number of spectra that are quite complex
and that vary considerably with changing con-
centrations. Fig. 5 demonstrates this complexity
and the changes caused by fluoride at § M CHNO,
for a 837x167* M plutonum solution. The
Iughest fluonde concentration 1s a 4:1 fluonde-
to-plutomium molar ratio. The peaks with 00 M
fluonde at 420 and 850 nm are absent in the
high-fluonide spectrum. There are numerous
changes in relative peak heights. The band at 475

008
Fluoride

005 — 837X 107 M
o = 167X 10"2M
¢ -~ 251%1072M
5 —- 335% 1072
D 004
[*]
0
0
<

0024

000

400 500 600 700 800

Wovelength (nm)
Fig. 5. Spectra of 8.37 X 10-? Af Pu(1V) wath fluonde.
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Fig. 6 Spectra of 837 X 10™% M Pu(lV) with oxalate

nm 1s less intense n the high-fluonide spectrum,
Oxalate does not have as great an effect on the
spectra of Pu(IV)-nitric acid solutions as does
fluonde (Fig. 6).

Number of absorbing species

Matrix rank determination has become a fairly
common procedure in spectroscopy for estimating
the number of absorbing species in a series of
muxtures [21]. This procedure is valid provided
Beer’s model 1s obeyed, that 1s, if the total ab-
sorbance 1s a inear summation of the absorbances
of the individual species. The major difficulty with
the procedure 1s determining the chemically
meaningful rank. Because of noise, the mathemau-
cal rank will usually be the lesser of I and K for a
data set composed of I spectra. The (h row of the
matnx contams the spectrum for the ith mixture,
and K is the number of waveliengths at which there
are absorbance values. Various methods for de-
termuining the number of absorbing spectes have
been proposed. In this paper, we will discuss only
the method based on cross validation. The spectral
data matrix used for this analysis consisted of
aither the fluoride or oxalate spectrat data set. In
each case, there are 70 spectra with 600 ab-
sorbance values, i.c., I by K = 70 by 600.

800 900

Cross vahdation

The cross validation for principal components
analysis contained in the set of pattern recognition
computer programs, SIMCA, was used for the
present  problem. SIMCA’s program module
CPRIN was used with the cross valtdation optton,
In cross validation, a subset of the data 1s ex-
cluded from the data set. Then a model 1s devel-
oped, and the excluded data values are estimated
(predicted) by using the model. The sum of the
squared differences between each true value and
each predicted value is the predicted residual ervor
sum of squares (PRESS). Next, the excluded data
subset 15 returned to the modeled data set, and a
different subset of the data s excluded Agamn, a
model 1s developed and used to predict the ex-
cluded subset. This process continues untd all
data have been excluded and predicted onc time
for each value of J (number of components). If,
after allowing for degrees of freedom, PRESS
continues to decrease upon additton of component
J, component J s assumed to model nonrandom
vanation 1n the data. However, if PRESS for
component J ts greater than PRESS for compo-
nent J — 1, component J 1s assumed to be model-
g only random noise in the data, In this case
component J should not be used, and we assume

e —— — .~
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TABLE 4

Cross vahidation results for determuning the number of hinear
mdependent components in the fluonde and oxalate spectral
data matsices

J Fluonde Oxalate
Vanance  PRESS*  Variance ~ PRESS™
explamed  J/A(J~1)  explained JAJ=1)
1 7518 050 9059 031
2 A7 036 667 0.55
3 142 075 148 069
4 049 086 053 078
5 042 083 030 079
6 026 086 011 06388
- 014 087 008 097
8 005 099 004 096
9 005 096 co3 " 100
10 003** 100 002 100

* For J=1, PRESS for J =1 1s based on the vanance ex-
plained by using the average values,
** A st interpretation of ¢ross validation results shows that
there are mine and exght components 1n the fluonde and
oxalate data sets

there are J — 1 hnearly mdependent components
in the entire data set. If the spectra of the individ-
ual chemical species add linearly, 1c. 1f Beer’s
model 15 obeyed, this number 1s the same as that
ol absorbing species in the solutions from which
the spectra were obtaied.

The data vanables were not scaled. Two differ-
ent SIMCA runs were made, one for the fluonde
and one for the oxalate data set with each spec-
trum normalized to a sum of 1.0. The results of
these two analyses are histed tn Table 4 in terms of
the ratio of PRESS for J components to the
PRESS for J —1 components The vanance ex-
planed by each component is also tabulated. These
PRESS ratios indicate mne components for the
fluonde spectra and eight components for the
oxalate spectral data set, In the absence of fluo-
nde or oxalate, studtes indicated five or six com-
ponents. Thus, the addition of fluonde or oxalate
to solutions of Pu(IV)-nitnc acid (4 M~10 M)
add about three or four observable components.

In this study we applied SIMCA, ncarest
neighbor, Bayes quadratic classifier, and the hinear
learning machine from ADAPT [18] to investigate
their uscfulness for classifying the fluoride or
oxalate Pu(IV)-nitric acid solutions. For the

ADAPT analysis, the Ry values were used to
divide the fluoride spectral data set into ‘good’
and ‘bad’ categones For the SIMCA pattern re-
cogmtion approach, data were not divided into
separate categories before analysis because 1t 15
possible to visually see the separation when plot-
ting certain of the sample scores.

ADAPT results on fluoride spectra

The classification results appear in Table 5. The
mput data to these pattern recognition methods
consisted of the principal component scores of the
spectra rather than the spectra themselves AH the
methods were able to separate spectra repre-
senting good and bad R, values reasonably well.
The lnear learning machine correctly categorized
all 70 spectra, and the Bayes quadratic classifier
only missed 1 out of 70. The nearest neighbor
results vary a httle depending on the number of
voting neighbors, Apparently three, five, or seven
voting neighbors give equivalent results, but none
are as good as the Bayes or learming machine
methods,

SIMCA Plots for fluoride and oxalate spectra

We developed a six-component model using
SIMCA and the principal components of Vis-NIR
spectra obtamed from 39 solutions. The 39 solu-
tions contamned only mtric acid ranging from about
1 M to 14 M and Pu(IV). No fluonde or oxalate

TABLE §

Pattern recogniticn summary results for fluonde spectra using
the Bayes quadratic classsfier, hincar learming machune, and
nearest naghbor algonthm in ADAPT

Good samples Bad samples No.of
(High R,) {Low Ry) naghbors

No No No No
COrect 1ncorTect correct 1ncorrect

Bayes 26 J 43 1
Learming 26 0 44 0
machine
Nearest 2 4 36 8 1
naighbor 23 3 39 s 3
24 2 38 6 s
2 3 39 ] 7
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was m the data set. (SIMCA mean centers and
autoscales the spectral intensiies before calculat-
ing the pnincipal components.) Here we use the
first two principal components denved by this
model to compare how the spectra of fluonde and
oxalate data plot as compared with Pu(IV)-mitric
acid,

The scores of the first two components for the
39 tramning samples are plotted 1 Fig 7, which
shows a mice semicircular trend of increasing

CHNO, molarity from the top left to the mddle
night of the graph The numbers 1n the figure with
an appended H designate total nitric acid molanty
CHNO,. The numbers with a prefixed T were all
between 6 5 and 8.5 M nutric acid, with nitric acid
molarity increasing from left to night. The desira-
ble samples, from an ion exchange perspective,
plot at the bottom of the figure as 7H Clearly,
given the location of a solution contaming only
Pu(IV) and nitnic acid on this figure, the ap-
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Fig. 7. Plot of first (wo principal components of 39 Pu(lV)-nitne aad samples making up the traimng set
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proximate quantity of acid or base to add for
adjusting the solution chemstry i a desired direc-
tion could be specified.

This same principal components model was
used to calculate scores for all samples of the
fluonide and oxalate data sets. The scores of the
first two principal components are plotted to-
gether with those of some of the traiming samples
n Figs. 8 and 9 for fluonde and oxalate samples,
respectively. (Traimng samples are i bold print.)
Fig. 8 shows the fluonde spectra plot in the plane

above the semicircle defined by the traming set.
Agan, the numbers refer to mitric acid molarity
and the Fs to fluonde samples. For a constant
nitric acid molarity, greater fluonide-to-plutomum
concentration ratios plot higher in the graph. If
aluminum were added to complex the fluoride in
an unknown solution that plotted in the ruddle of
Fig. 8, its position in this graph would move down
and to the night. Upon arnving at the semicircle
representing the tramng set, a base, such as
sodium hydroxide, could be added to the solution
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Fig. 8 Plot of first two pnncipal components for fluonde samples and some Pu(1V)-nunc acid training samples
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until the measured spectrum’s principal compo-
nents plotted between 7 M and 8 M CHNO,, 1¢.,
TH and 8H. In this way, Vis~NIR spectrometry
could be used for real-ume adjustment of the
solution chenustry to arnve at a system desirable
for 10n exchange,

The first two principal component scores of the
oxalate spectra, together with those of some of the
trasng samples, are plotted in Fig. 9. In contrast
to the fluonde samples, these samples generally
plot on or below the semicircle defined by the
training samples. This plot venfies our carlier ob-
servatton that oxalate does not have as much

effect on the Pu(lV)-nutric acid spectra as docs
fluonde (Fig 6). which agrees with the known
ry of these system:

SUMMARY

We have shown that Vis-NIR specira of
Zu{IV)-nitric acid solutions contaimng either flu-
onde or oxalate provide information concerming
the solution chenustry Pattern recognmition meth-
ods based on the spectra can be used to determine
chemical character of the solutions. Plots of prin-

P PSR - DU
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apal component scores provide information about
the solution chemistry that could be used to adjust
solution conditions to desired states
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Discussion of “Determining chemical characteristics
of plutonium solutions using visible spectrometry
and multivariate chemometric methods”
by W.P. Carey and L.E. Wangen

Mark E. Johnson
Department of Statistics, Unrversity of Central Flonida, Orlando, FL 32816 (US A )

This paper s an 1deal contnibution to the Sta-
ustics 1in Chemustry conference held in College
Station The authors present several challenging
problems which they address 1n an intelligent fash-
1on using PLS regression and a vanety of pattern
recogmition techniques.

Therr most successful application 1s in the de-
termination of Pu(Ilf) and mitric acid using PLS
regression The results on test samples given in
Table 2 provide strong evidence that the authors
can predict unknown concentrations. Perhaps the
authors might comment on any operator or tech-
mician effects Obviously, they are adept at using
the LT Industnies Quantum 1200 device. In routine
operations by lesser skilled technicians, would the
performance be so good?

The questions related to qualitative determina-
tion of Pu(IV) complex composition are clearly
more difficult and the results not so clear-cut. 1
am a httle unclear on the results in Figs. 5 and 6

for the zero fluonide and oxalate concentration, If
there were five concentrations used, where is the
fifth curve?

Figs. 7-9 are cunious. Many times statisticians
neglect the very useful techmque of designating
pomts on plots as a value-added charactenstic
Fig 7 scems (unfortunately) to set a standard by
which we view Figs. 8 and 9. The scatter in Figs. 8
and 9 1s much more than in Fig. 7 What fraction
of the vamation 1s explaned by the first two
principal components?

One final comment concerns Table 5. Although
Bayes and learming machine dominate nearest
neighbor procedures here, I am unwilling as yet to
disnuss nearest neighbor (the authors do not sug-
gest this but a reader might madvertently con-
clude as much). I suspect that if the data were a
tad more ‘noisy’, nearest neighbor might make a
comeback. What 1s it about the authors’ applica-
tion that favors Bayes and learming machine?
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Abstract
Kim, Y -1 and Nachisherm, C.J, 1991 Transf robust | design with app! to some problems in ch y

Chemometrics and Intelligent Laboratory Systems, 10 261-270

In this paper we consider the of an

PPIOP

1 design when the exact form of the error distnbution 1s

unknown The goal of error-robust design IS o dcslgn an expenmcnl so that the “ill-effects’ resuiting from a lack of kncwlodge of the

error structure will be minimal N hms for
method 1s illustrated in connection wath the design of

of e bust dcsng,ns are d d and the
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1 INTRODUCTION

The ination of dard statistical tech-
niques n order to determine their sensitivity to
assumptions and development of new techmques
that are insensitive to assumptions have been major
areas of statistical rescarch in the last two decades
Expenmental design is an area in which it 1s
particularly important to inves(igatc questions of
robustness b an exper ’s 1on,
about the experimental process are critical m de-
termining the design. Furthermore, the design must
be chosen before the data are collected and so
cannot be discarded if the data indicate that the
assumptions are seriously violated. Thus 1t is im-
portant to examine experimental designs for their
sensilivity to assumptions.

Generally, we obscrve that the design chosen
will exphicitly depend on the experimenter’s
(1) design critenion;
(2) defimition of the design space;
(3) a priont speaification of the model.
By ‘model’ we mean the distribution of a response

y(x), at some pornt x in the g-dimensional design

space X. Unfortunately, precise a prior specifica-
tion of ponts (1)~(3) ts often difficult m practice.
Thus fact has led statisticrans to search for ways of
constructing designs where one or more of the
items listed cannot be so exphently stated.

For example, with regard to (1) above, Box {1]
stressed the need to design experiments with many,
sometimes conflicting, goals in mind, not just one
mmphed by a single design cntenion. Kuefer 2]
examined the robustness of optimal designs to
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changes 1a critenna. Welch [3] presented a method
for cataloguing designs that are optimal by one
critenon, so that further comparisons among these
optimal designs could be made on the basis of
other criteria

The question of robustness to assumptions con-
cerning the true model # has been widely studied
Two different, but complementary, approaches
have been taken. The first approach has sought
designs that will yield reasonable results for the
proposed model even though 1t is known to be
mexact. Stemberg and Hunter [4] call these
‘model-robust designs’. For examples of work in
this realm, see refs. 5-9. The second approach has
focused on developing designs that facihtate 1m-
provement of the proposed model by trying to
highlight suspected inadequacies. Steinberg and
Hunter call these designs * model-sensitive designs’.
Examples are given i refs. 10-17, among others.

Special ‘model-robustness’ problems anse in
the design of expennments for nonlinear models
This 18 because the best design depends, n gen-
cral, on the unknown parameter values. Investiga-
tors are thus placed mn a paradoxical position of
having to known at design stage (at least ap-
proximately) the very quantities that they are con-
ducting the experiment to estimate. Luttle has been
done to assess the rob of nonli desig
to musspecification of 8. (Chaloner and Larntz [18]
develop a Bayesian approach i which only a prior
distrbution for @ 1s required.) For reviews of
nonlinear designs, see refs. 19 and 20, among
others.

A final area of robustness concerns the sensitiv-
ity of designs to the specification of error struc-
ture. The occurrence of outhers and mussing ob-
servations represent two ways in which these ase
sumptions may be violated. A number of authors
have studied design n such circumstances, See, for
example, refs. 8 and 21-23 regarding design 1n the
presence of outhers. Also see refs. 24 and 25
concerning design when missing data might be a
problem. Concerning lack of independence in the
error terms, see refs. 26 and 27,

Surprisingly little has been done, however, with
regard to the designs that are robust to the general
misspecification of the error structure. In what
follows, we consider the construction of such de-

signs The only relevant paper on this 1ssue was
found to be ref. 28 They applied a ‘power trans-
formation weigthing’ techmque to develop sequen-
tial expenimental designs for precise parameter
estimation of the model and transformation
parameters together.

Thus paper has the following structure. We first
review the design of experiments in the presence
of knowr., non-constant vanance in Section 2. In
Section 3, a general definition of error-robustness
18 developed and a number of examples are con-
sidered. Carroll and Ruppert [29] recently advoc-
ated a new method (power transformation on both
sides—PTBS) for simultaneous estimation of the
regression parameters and index of the ‘best’
power transformation, A We show m Section 4
that designs that are robust (in a sense to be
described) to the eventual specification of A are
related to error-robust designs Two mmportant
examples from the hterature are studied 1n Section
5. Some closing remarks are given in Sectton 6

2 OPTIMAL DESIGN IN THE PRESENCE OF NON-CON-
STANT VARIANCE

2.1 Notation

In what follows, we assume that responses are
independent having mean E(p(x)) = 5(x, 8) and
vanance Var (3(x))=0c*(x, A) where § and A
are unknown parameter vectors of dimensions p
and ¢ respectively We use the term error function
i connection with o%(x, A), its inverse,
67%(x, A), 1s termed the efficrency function, where
we shall assume 0 <o?(x, A) < c0. For brevity
we will often the abbreviated form a%(x)

Consider an N-point expeniment m which »n,
observations are taken at the ponts x, € x for
1= 1,2,...,n such that I_, n, = N. Such an ex-
penment can be descnbed by a measure §{N] as
follows:

;odx=x,€ {x.00x,)
N - {n, 1 y 1 n
NI 0; otherwise

Let SEIND ={x,,..., x,} denote the support of

£[N). Note that af &, =§[N]/N, then §y 15 a
discrete probability measure on ¢ Thus, an exact
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or discrete expenimental design 1s a probability
measure £N on the design space x subject to the
restriction that N&,(x) is an integer.

Removing the restriction that £y(x) bea mql&i-
ple of 1/N, the set of approximate expennmental
designs on x is denoted by

Ze= <g|fx d&(x) =1, §(x) =20,

forevery x€ X}

An (approximate) design problem, specified by
the tuplet (1, 0%, x), 15 solved by selection of an
approximate design §€ Z for the model 7, the
design space x and the error function o2, Note
that 1 many design problems an exact design x
can be approximated by an approximate design £,

2.2 Measures of optimality

We assume that least squares estimates 4 of the
parameter § are to be obtained Let f(x, §)=
In(x, 8)/96 and

/ T( xy, 8)
F(8) =
I7(x,. 0)
Then for these estimates (with n, = 1), the asymp-
totic covanance ts given by
. N RS
var(0) = [F(8) 'V-'F(8)]

where V=dag {o*(x, A), ..0%x,, \)}. For
hinear models, the so-called design matnx, X =
F(8), is independent of § For any N-point dis-
crete design £, we have

F(§) V-1F(d)
sN T o7 x. Mf(x, 6)/7(x, 6)en(x)

xeS(ty)
=N [a(x, M)f(x, )f7(x, 0) du(x)
X

ard hence the 1, th element of F(8)TV-"F(d)/N
is 073(x, A)f(x, 0)f(x. 0), averaged with re-

spect to the discrete probabihty measure §,. In
general, the normalized information matrix of an
experimental design £ is

M5, 8) = j; 07%{(x, \)f(x, 6)f7(x, 8) dé(x)

The dispersion matrix M™! (£, ) is sometimes
written D(§, 9).

Many criteria have been proposed for optimize
g the selection of a design £ for the design
problem (%, 6%, x). Generally, the cnteria are
based on some functional of the mformation ma-
tnix, M(£, 8). Motivauon for such cntenia 1s often
based on the properties of the resulung least
squares estimate 4. For example, a design &y, 15
defined to be D-optimal for (9, 02, x) and prior
estimate 8, if

rfr:zasle(f, 6,) ] = IM(%p, G) |

By defimtion, D-optimal designs munimize the
(asymptotic) generahzed vanance of the least
squares estimate of 8.

Alternatively, suppose that an expenmenter 1s
concerned with prediction, The least squares
estimate of the mean response at a pomnt x 1s

$x)=n{x, §)
Var($(x)) = Var(n(x, §))
=fT(x, O)D(%, 6}/ (x, )
=d(x, 4, §)

G-optimal designs mmimize the maximum nor-
malized vamance of prediction o7 x, A)d(x,
£, 8). Formally, a design ¢* 15 G-optimal 1f

mm max 6" *(x, A) d(x, £, 6)
(€= xex

=mino~*(x, A) d(x, £*. 6,)
x€x

The D-efficiency of a design £ for (n, 02, x) and
prior estimate §,, with respect to §,, is

D(é, & (n, o, X))
= {det M7}(%,, ,) det M(£, 6,)}"”

[P
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Similarly, the G-efficiency of a design ¢ for
(1, 02, x) and prior value 8, with respect (0 £, 1s

G(é' £ (0. o, X))

= max d(x. &, 8,)/max d(x, £, 6,)
x€x x€x

The following result, given by Kiefer and Wolfo-
witz [30] 1n the context hnear models and later [31]
n the context of nonlinear models, shows that D-
and G-optimal designs are equivalent.

THEOREM 1. The following conditions are
equivalent:

(a) ¢* 1s D-optimal

(b) ¢* is G-opumal

© mé\xa‘z(x, N d(x, € 6,) = p.

X
The se:(of all designs satisfying these conditions 15
convex, and the corresponding nformation
matnces are identical,

The equivalence of conditions (a) and (c) yields
a simple method for checking the optimality of a
candidate design & If the maximum normahized
prediction vanance s greater than p, then €15 not
D-(G-)optimal, Numencal algonthms {32} for con-
structing D-(G-)optunal designs make direct usc
of thas condtuon.

We note that m practice o%(x, A) s usually
assumed constant, The impact of this assumptton
can be illustrated by the following example. Sup-
pose n(x, 8)=fT(x)8, where fT{x)= (1, x, \?)
and x=[-11} Suppose also that o¥(x, A)
=HA=Dx+A+1)] for A= 1. Thus, the error
variance tnereases linearly wath slope (A — 1) over
the design space x and if A=1, o¥(x, \)=1,
Table 1 shows D-(G-)optimal designs for varous
As. Note that as the value of A mcreases, the

TABLE }

Location of intenor points (x,) of G-optimal designs (£, ) for
quadratic regression for vanous A, x=[~L1} o(x,A)
~HA=Dx+ A+ B S (£ D=hiin) =}

A Intenor point x, G-Efficiency of §;
1 [ 1000
3 =0141191 0958
s ~0 183268 0924
7 ~ 0221089 0902
9 -0 241081 03888

design shifts the middle support point toward the
Ieft side of the design space. Surprisingly, the
D-optimal design shifts mass toward lower van-
ance (high efficiency) region of the design space.
This patters has consistently appeared in worked
examples, For further results see refs. 32 and 33.
We note from the table that the G-efficiences are
monotonically decreasing in A. For example, with
A =09, the G-efficiency of £, 1s 0888, This very
simple example illustrates the nonrobustness of
the usual optumal design and, we think, motivates
the need for the study of designs which are robust
to misspecification of 6* In the following section
we introduce the concept of error-robustness and
develop methods for constructing robust designs.

3 ERROR-ROBUST DESIGN

The concept of an error function 1s crtical in
both design and analysis In data analysis con-
texts, graphical exarnation of scatterplots of re-
siduals versus predictors or fitted values is used to
detect nonconstant varrance. A systematic mega-
phone shape in the plot would indicate that the
variance of the response depends on the quanuty
plotted on the x-axis Cook and Wesberg [34]
suggested an alternative approach for diagnosing
non-constant error terms, It involves expansion of
the regression model by assuming a particular,
though widely applicable, functional form for the
vanance:

var( p(x)) « exp{N'x)

where A 1s an unknown parameter vector. Cook
and Weisberg utthzed this difimtion to propose
the score test and the equivalent graphical method
for testing the assumption of constant error terms
m linear regresston. Many of the error functions
commonly encountered in data analysis anse as
special cases of this important, general form, Sup-
pose we expand var( y(x)) = exp(N'x) about x =0
in a single dimension. Then

var( p(x)) & 1+ Ax + Nx2/2

and we specify o?(x) as proportional to a
quadratic function of x. Specifying only the first
term imphes that o%(x) is proportional to x, which
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may be a very natural assumption m a compara-
tively narrow range.

The results of Section 2 indicate that optimal
designs depend on the model specification 1 as
weli as the variance function 02 As stated previ-
ously, it is typically the case in practice that the
variance function o%(x, A) cannot be determined
before experimentation. Given that the true error
function o%(x, A) 1s unknown we will consider a
design £ to be robust to specification of o*(x, A)
if £ 1s hughly efficrent for error functions hkely to
be encountered m practice. More specifically we
shall assume that 6% 15 an unknown element of
some known space of error functions, E. We will
then attempt to charactenze designs that are effi-
cient, i a sense to be descnbed, for all possible
o?€E. To do so, we shall require the following
result, due to Atwood {35}, which relates the D
and G efficiencies of a design

THEOREM 2 Let £,: be the D-optimal design
for (1, 0%, x). Then for any design ¢ in E,

D(%, &,:2.(n, 0% x)) 2 G(£, £,2(n. 0% X))

G-efficiency provides a lower bound for the D-ef-
ficiency of a design £ with respect to the D-opui-
mal design £,:. Following Thibodeau [8}, 1n con-
text of model robustness, we attempt to construct
designs having high D-efficiency for each 0’ € E
by maximizing the lower bound. Loosely speaking,
we will consider a design error-robust if 1ts G-ef-
ficiency is high for every 0% € E. Thus no matter
what the subsequent analysis indicates regarding
choices of o2, the D-efficiency of the design will
be relatively high. Formally, we have

Defimtion 1. The design ¢* € =
and only if

is error-robust if

max mm C(E. §.1(m, 0%, x))

$GZ 52

= min G(¢*, £,,(n, 0% x))
o‘qE

Notice that b the ber of par 3
in the model, p, does not change with o2, Defint-

tion 1 indicates that a design 1s error-robust design
if and only if

min max maxe~*(x) d(x, &, 6,)
£62 426K x€x

= max maxo~(x) d(x, £*, §,)
o*qE x€X
Thus the error-robust design mmnimizes the “worst
case’ normahzed maximum variance of fitted val-
ues.

In most mstances, analytic charactenzation of
the error-robust design 1s impossible, and numen-
cal methods are required See Kim [33] for some
notable exceptions. The following algorithm, which
1s a simple modification of one by Fedorov [32],
can be used for computer construction of error-
robust designs.

Algorithm 1

1. Speofy nonsingular starting design €, Set 1= 1.

Find x, such that n}mx max o~ %(x) d(x, &,
GE Y€X
0p) = "~2(X ) d(x,, fl‘ 0,)-

. Let a,=1/(1+5), 520, and form §,,, = (1 -
a,)§, + ., where §, places umit mass at x,
Update D.

4 Check for convergence. One simple approach 1s

as follows. Assume k22 1s a user defined
nteger, Typically, k= 5. Let

[

w

8/‘“072(-"4-/‘1) d(xr—jn‘ §i et 00)
1 <7 <mnfi,k]
Let s? be the sample vanance of the {8,}. If

12k and s§ 1s sufficiently small, stop.
Otherwse, set 1=+ 1 and go to 2.

Note that the sequence { @, }, as specified above,
will not, n general, lead to monotoncally decreas-
g 07%(x,) d(x,, £, 6))

As a sumple 1llustration, consider again the
quadratic regression model f7(x) = (1, x, x?)
with E= {0} (x)jo¥(x)x(A=Dx+(A+1), A
= 1,3, 5,7, 9}. The following design was found to
be error-robust using the algorithm descnbed
above: £(£1) = 0325, £(0.039609) = 0.182,
£(—0.260323) = 0.167. Table 2 presents Geef-
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TABLE 2

G-¢efficiencies of vanous designs £ for quadratic regression on
x=i=L (A -Dx+(A+1)

Design Actual y

1 3 S 7 9
& 10 0.958 0924 0902 0888
& 0948 10 099 0998 0.994
& 0914 0993 10 0998 0994
& 0876 0979 0997 10 0999
EN 0854 0969 0992 0998 1.0

Robust 0974 0981 0979 0978 0974

fictlencies of designs constructed under varying
assumptions about A For example, the first row
summanzes the performance of the optimal design
under assumption A =1, for vanous alternative
“true’ efficiency functions As noted previously, if
A turns out to be 9 by subsequent analysis, the
design will be 88 8% G-efficient. The worst case
occurs 1n the lower left-hand corner of the table.
Here the expenimenter has assumed A =9, when A
turns out to be 1, m which case the G-efficiency of
the D-optimal design 1s 85.4%. In contrast, the
worst-wase G-efficiency of the error-robust design
1s 97.4% Interestingly, the error-robust design
consists of 4 support pomnts. Intmtively, mass at
x = 0039609 was required to protect agamst A = 1
where mass x = —0.260323 was required for pro-
tection against A = 9. This intuttive explanation 1s
supported by the fact that during execution of the
computer algonthm, maximuzation of o~ %(x) d(x.
£, 8,) occurred only at A=1 or A =9. This exam-
ple suggests that for A =[a,b}, m some cases a
reasonable approximation to the error-robust de-
sign will be obtamed by muixing the D-optimal
des'gns §, and £, appropnately.

4 POWER-TRANSFORMATION ROBUST DESIGN

Recently Carroll and Ruppert {29] introduced a
method, power transformation on both sides,
PTBS, for simultancous esiimation of regresston
parameters and an appropriate power transforma-
tion index. They discussed its use with known,
nonl ion dels. Si the known

& Pr

mean structure, which may be denived, for exam-
ple, from a physical system, 1s E(y(x)) = n(x, 8)
and that 9(x, 8) > 0 for x € x. Errors {¢} are not
necessarily additive (or constant over x) implying

y(x) =g(n(x, 8),¢)

For example, if the errors are log normal and
g(a, b)=ab (i e., errors are multipicative), taking
logs yields

log(y(x)) =log n(x, 0) +¢

Where {¢} are normally distibuted. This type of
situation Ied Carrolt and Ruppert to constder a
faruly of strictly monotonic transformations
h(y, X), indexed by the g-vector A, and to assume
that for some value of A, say A,

B(y, Ao} =h(n(x, 6),0,) +¢

Thus approach ts 1n the spint of Box and Cox [36],
who suggested the well known power transforma-
tion fanuly:

Ay A)=yN=(y~1)/A i A=0

=log () i A0

Box and Cox sought a transformation that achieves
(a) a ssmple additive or linear model, (b) homo-
scedastic errors, and (¢) normally distnibuted er-
rors In PTBS regression, both the response and
the model are transformed via 4. An important
advantage of PTBS regression 1s that the onginal
meanmg of the parameters i1s preserved Estima-
tion of & and A i PTBS regression is typically
carried out via normal theory maximum likel-
hood.
For the above model, we have

M (x, 8
WD) v 0)

=a(x, 0)*f(x. 0)

where f(x, ) 1s as defined previously: f(x, 0)=
an(x, 8)/30 Given A, mformation matnx and
variance functions are defined as

M, 6)

= /x 1(x, 011 (x, 0)f7(x, 0) d§(x)
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and

dy(x, & 8) =n(x, 6)*"f7(x, 8)
XM;(§, 0)f(x, 6)

respectively.

The above expressions indicate that the design
problem may be viewed as standard, with induced
efficiency function 67 2(x, A) = 5(x, §)* =D, It is
also apparent that choice of design will depend on
an experimenter’s a priori suspictons concerning
A. Typically, onc takes A=1 and hopes for the
best, although consequences can be dire. For ex-
ample, suppose that the underlying theoretical
model 15 quadratic and errors are multivhicative
and log normal. That i~, n(x, ) = §; + f,x + 6,x?
and A=0 gives the appropnate transformation.
For 7 = (1, 1, 1) an¢ x ={0,1), the design §,(1)
=k, £,46373) =} 1s D-opumal. On the other
hand, if the expertmenter assumes A = 1, and ob-
vious choice might be the usual D-optimal design
£,. which places § mass at the powts %1 and 0.
Smnce max, ¢ x ol & 6) = 3.56, &, 15 84% G-
efficient. If the appropriate A 1s =1 or 2, the
G-efficiency of £, drops to 47% 1n both cases.

The above discussion motivates the need for
designs for PTBS regression that are robust to
spectfication of X for A in a specified set L We
offer the following,

Defimition 2 The design §* € Z 1s power-trans.
formation (PT) robust if and only if

min m ax dy(x. &) = x dy(x, §*
PR T a0 0= pp gy e
where dy(x, £) = fTOM;} fi(x).

As noted, for a specified regression function
n(x, 8), the Carroll and Ruppert family of trans-
formations indexed by A €L mduces a corre-
sponding famuly of tduced error function E, =
{(n(x, ¥V reL}.

Thus Definition 2 may be restated in the following
way.

Defimtion 3, The design £* € E is PT-robust if
and only if §* is error-robust for E,.

Since PT-robustness is a special case of error-
robustness, the algonithm previously developed for
computer construction of robust designs 1s applt-
cable.

5 TRANSFORMATION ROBUSTNESS APPLICATIONS

The following two examples are taken from
hterature and are frequently cited n papers on
nonhnear design. These examples illustrate how
mefficient the usual D-optimal designs can be in
the presence of uncertainty about the error struc-
ture, and the efficacy of the robust approach,

Example 1. The following experiment was re-
ported by Box and Hunter {20} and has been
discussed by numerous authors The purpose of
the expertment 1s to model some catalytic reac-
tions of the type R - P, + P, in which the reagent
R 1s some quaternary or primary alcohol from a
log cham, the product Py 1s an olefin and the
product p 1s water. The theoretical model for such
a reaction 1s

0,0yx,

"0 0= THs

where 7 is the speed of the chemical reaction, x,
1s the partial pressure of the product P, x, 1s the
partial pressure of the product Py, 6, 1s a reaction
parameter, 8, is the absorption equlibrium con-
stant for the product Py, and 8, is the effective
constant of the reagent R,

For purposes of design construction, following
Box and Hunter {20], the prior valuss of the
parameters were fixed at 6] =[2.9,12.2,6.9). It was
assumed that observations are possible 1n the re-
gion x = {x, x;10<x, <3, 0<x;53), which
leads to the locally D-optimal design, £,(0.3, 0.0)
=£5(3.0,0.0) = £,,(3.0,0.8) = 1 /3. £, and x arc
pictured in Fig. 1a, The fact that the design does
not cover the design space leads one to question
the logic of the design, unless the experimenter
has particularly strong faith in his assumptions.
The D-optima! designs for A= =1 and A== 0 are
pictured in Figs. 1b and lc, respectively. Note that
for A <1 the efficiency function 1s undefined at

e — = o
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Fig 1 Opumal designs for Example 1 x=[03]7 (@ Optimal
design for Awl £(03,0)=§(3,0)=£(3.08)~1/3 (b) Optr-
mal design for A= =1, £(01,0)=¢(01,3)=1/3, {3,0)=
£(3.3) =~ 1/6 (c) Optimal design for A= 0 ¢(01,0)~¢(3,0)
=§(01,3)=1/3 (d) Robust design §(3.0) = 0216 ¢(3.08)
=017, £03,00=~0101, §(01,3)~0227, ¢01.0)=0212.
{31 =007

X, = 0. Thus 1t was nccessary to truncate the de-
sign space such that x = {(x;, x;)|A<x, 53,0
S X, < 3} for some A > 0. We chose 4 = 0.1, The
truncation s indicated mn Figs. 1b and 1c.

The PT-robust design 1s pictured i Fig. 1d.
G-efficiencies of the robust design for vanous true
A are summanzed in Table 3. Notice that the
worst case G-efficiencies result for A= 1 with
both values being about 66%. As was indicated 1n

TABLE 3
G-elficrencres for designs an Example 1
A Assumed A
-1 ] 1
-1 1000 0520 0220
0 0997 1,000 0000
1 0000 0214 1000
Robust 0656 0784 0662

the previous example the error-robust design seems
to represent the best trade-off possible between
D-optimal d igns for A = 4 1. Table 3 also shows
that this 66% -effictency 1s high i companson to
the =0% G-efficiency resulting from the case
when we assume A =0, and A turns out to be 1.

Example 2 The following model was studied by
Carr [37)

0,6,(x; — x,/1.632)
n(x, 0) = 1+ 0,%; + 03x5 + Oy,

where 7 15 the rate of disappearance of n-pentane,
Xy, X3, Xy are the partial pressures of hydrogen,
n-pentane and s-pentane respectively, 8, 1s a reac-
tion paramerer and 6,, 6,, 6; are equilibnum
constants (psta”'). For this problem, x =
{(xy, x50 X3){107 5 x; £471, 69<x,5294; 11
S X3 121}, Box and Hill {38} later used power
transformation weighting to fit the model to Carr’s

12 12t
M X4
" 6 " 63
107 an 107 an
@ ®
;
21 { 12t
234 &7 M
n L] 19 8
07 an w1 n
@) @

Fig. 2 Optimal designs for Example 2 (a) Opuimal design for
A= 0 {107, 294, 1) = £(471, 69, 11) = £(107, 69, 11) =
£(107,125 5, 121) = 025 (b) Optimal design for A =05 §(107,
294, 1D = £(371, 294, 1) = {107, 69, 11) = £(107, 294,
121) =025 (c) Optimal design for A=1: £(107,294,11) =
£(320, 293, 11) = §(207, 125 25, 11) = £(107, 294,93 5) = 025
(& bust design' £(107,294,11) = 0189, £(107, 12525, 11)
= 0073, §(107.294,935) ~ 0116, #(380.294, 11) = 0181,
$(107, 69,93 5) = 0099, £(471,69,11) = 0118; §(107,69,11)
= 0142, £(107,294,12]1) = 0082,

. N e
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TABLE 4
Geeff, for designs in Example 2
A Assumed A

0 172 1
0 1000 0350 0094
172 G536 1000 0822
1 0304 0663 1000
Robust 0768 0767 0768

24 observations. We consider the construction of a
PT-robust design.

Carroll and Ruppert obtamed the PTBS
parametess esumates (8, ) = (39.2, 0.043, 0021,
0104, 0.72). These point estimates for ¢ are used
as prior values in what follows. Reasonable values
of A were thought to be 1n the interval L =[0,1].
Computational constraints forced us to rather
severly discretize both L and x. We took L=
{0,0.5,1.0} and to approximate x, we used as a
candidate set cor ding to the 5* factonal
regton The error-robust design is pictured in Fig
2d For reference, the D-optimal designs for A = 0,
1/2, and 1 are pictured m Figs 2a-c. Table 4
gives G-efficiencies for varying designs and as-
sumptions about A For example, a G-efficiency
of 30.4% occurs when A = 0 and constant vanance
15 assumed. In contrast, the minimum G-efficiency
for the error-robust design 1s 76%.

6 CONCLUSIONS

In this paper we have summanzed research
directed toward the characterization of designs
that are msensiive to the specification of error
structure. We have developed the related concepts
of crror and transformation robustness and ex-
amined a number of designs that were approxi-
mately optimal by our stated criterion, Some obvi-
ous cxtensions, however, are still needed. While
the designs calculated arc reasonably robust to the
specification of error structure w the nonlinear
case they suffer from the need to specify 8 a prior.
One way of alleviating this difficulty may be to
wombine the maximum approach suggested hercin
with the methods of Bayesian nonhincar design as

described in ref 18. Such metheds are currently
under investigation
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